Skip to main content

From Bounded Reachability Analysis of Linear Hybrid Automata to Verification of Industrial CPS and IoT

  • Chapter
  • First Online:
Engineering Trustworthy Software Systems (SETSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12154))

Abstract

Hybrid Automata are a well-known framework used to model hybrid systems, containing both discrete and continuous dynamic behavior. However, reachability analysis of hybrid automata is difficult. Existing work does not scale well to the size of practical problems. This paper gives a review of how we handle the verification of hybrid systems in a path-oriented way. First, we propose a path-oriented bounded reachability analysis method to control the complexity of verification of linear hybrid automata. As we only check the reachability of one path at a time, the resulted state space for each computation is limited and hence can be solved efficiently. Then, we present an infeasible constraint guided path-pruning method to tailor the search space, a shallow synchronization semantics to handle compositional behavior, and a method based on linear temporal logic (LTL) to extend the bounded model checking (BMC) result to an unbounded state space. Such methods and tools are implemented in a tool, BACH, and have been used as the underlying decision procedure of our verification of cyber-physical systems (CPS) and Internet of Things (IoT).

This paper follows the lecture notes presented by the first author at the School on Engineering Trustworthy Software Systems (SETSS) in year 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(v_1^2\) denotes the second occurrence of the location \(v_1\) (the 6th location) in the path \(\rho \).

  2. 2.

    Unless otherwise denoted, in this section, \(a_{\bullet }\) and \(b_{\bullet }\) represent real valued constants, and \(c_{\bullet }\) represents real valued constant coefficients, where \(\bullet \) is a subscript for identification purposes.

  3. 3.

    We present two ways of authoring specifications. First, users can author specifications according to given templates. Second, we also present a natural language processing-based method to translate specifications in the form of natural language sentence to LTL formulas. Please refer to  [33] for detail.

  4. 4.

    As this paper is used as notes for the tutorial of SETSS 2019, and also due to the space limitation, we do not include experimental data in the paper. Please refer to the series works of BACH for detail.

References

  1. Json.net (2009). https://www.newtonsoft.com/json

  2. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)

    Article  Google Scholar 

  3. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_6

    Chapter  MATH  Google Scholar 

  4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model checking. Adv. Comput. 58(11), 117–148 (2003)

    Article  Google Scholar 

  6. Bu, L., Li, X.: Path-oriented bounded reachability analysis of composed linear hybrid systems. Int. J. Softw. Tools Technol. Transf. 13(4), 307–317 (2011)

    Article  Google Scholar 

  7. Bu, L., Li, Y., Wang, L., Chen, X., Li, X.: Bach 2: bounded reachability checker for compositional linear hybrid systems. In: 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), pp. 1512–1517. IEEE (2010)

    Google Scholar 

  8. Bu, L., Li, Y., Wang, L., Li, X.: Bach: bounded reachability checker for linear hybrid automata. In: 2008 Formal Methods in Computer-Aided Design, pp. 1–4. IEEE (2008)

    Google Scholar 

  9. Bu, L., et al.: Toward online hybrid systems model checking of cyber-physical systems’ time-bounded short-run behavior. ACM SIGBED Rev. 8(2), 7–10 (2011)

    Article  Google Scholar 

  10. Bu, L., Wang, Q., Ren, X., Xing, S., Li, X.: Scenario-based online reachability validation for CPS fault prediction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2019). https://doi.org/10.1109/TCAD.2019.2935062

    Article  Google Scholar 

  11. Bu, L., Xing, S., Ren, X., Yang, Y., Wang, Q., Li, X.: Incremental online verification of dynamic cyber-physical systems. In: Teich, J., Fummi, F. (eds.) Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25–29, 2019, pp. 782–787. IEEE (2019)

    Google Scholar 

  12. Bu, L., et al.: Systematically ensuring the confidence of real-time home automation IoT systems. ACM Trans. Cyber-Phys. Syst. 2(3), 1–23 (2018)

    Article  Google Scholar 

  13. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_10

    Chapter  MATH  Google Scholar 

  14. Clarke Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  16. Dolzmann, A.: Redlog (2006). http://redlog.eu

  17. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_17

    Chapter  MATH  Google Scholar 

  18. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  19. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743 (2019)

    Article  Google Scholar 

  20. Henzinger, T.A.: The theory of hybrid automata. In: Verification of Digital and Hybrid Systems, pp. 265–292. Springer (2000). https://doi.org/10.1007/978-3-642-59615-5_13

  21. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_48

    Chapter  Google Scholar 

  22. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, pp. 373–382 (1995)

    Google Scholar 

  23. Lee, E.A.: Cyber-physical systems - are computing foundations adequate. In: Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, vol. 2, pp. 1–9. CiteSeer (2006)

    Google Scholar 

  24. Li, X., Aanand, S.J., Bu, L.: Towards an efficient path-oriented tool for bounded reachability analysis of linear hybrid systems using linear programming. Electron. Notes Theor. Comput. Sci. 174(3), 57–70 (2007)

    Article  MATH  Google Scholar 

  25. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 243–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_18

    Chapter  MATH  Google Scholar 

  26. Pascoe, R.D., Eichorn, T.N.: What is communication-based train control? IEEE Veh. Technol. Mag. 4(4), 16–21 (2009)

    Article  Google Scholar 

  27. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5_13

    Chapter  Google Scholar 

  28. Talal, M., et al.: Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: multi-driven systematic review. J. Med. Syst. 43(3), 42 (2019)

    Article  Google Scholar 

  29. Xie, D., Bu, L., Li, X.: Deriving unbounded proof of linear hybrid automata from bounded verification. In: 2014 IEEE Real-Time Systems Symposium, pp. 128–137. IEEE (2014)

    Google Scholar 

  30. Xie, D., Bu, L., Zhao, J., Li, X.: SAT-LP-IIS joint-directed path-oriented bounded reachability analysis of linear hybrid automata. Form. Methods Syst. Des. 45(1), 42–62 (2014)

    Article  MATH  Google Scholar 

  31. Xie, D., Xiong, W., Bu, L., Li, X.: Deriving unbounded reachability proof of linear hybrid automata during bounded checking procedure. IEEE Trans. Comput. 66(3), 416–430 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  33. Zhang, S., Zhai, J., Bu, L., Wang, L., Li, X.: Natural language-based formal specification generation for trigger-action style smart home IoT system. In: Design, Automation & Test in Europe Conference & Exhibition, DATE 2020. IEEE (2020)

    Google Scholar 

Download references

Acknowledgement

We are grateful to Dingbao Xie, Yang Yang, Wen Xiong, Xinyue Ren, Shaopeng Xing all from Nanjing University, Qixin Wang from Hong Kong Polytechnic University, Mike Liang, Shi Han, Dongmei Zhang from Microsoft Research Asia, Stefano Tonetta, Alessandro Cimatti from Fondazione Bruno Kessler, Edmund Clarke from Carnegie Mellon University and all the other co-authors for their collaboration in previous works on verification of LHA, CPS, and IoT. This paper is supported in part by the National Natural Science Foundation of China (No. 61632015, No. 61572249, 61561146394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bu, L., Wang, J., Wu, Y., Li, X. (2020). From Bounded Reachability Analysis of Linear Hybrid Automata to Verification of Industrial CPS and IoT. In: Bowen, J., Liu, Z., Zhang, Z. (eds) Engineering Trustworthy Software Systems. SETSS 2019. Lecture Notes in Computer Science(), vol 12154. Springer, Cham. https://doi.org/10.1007/978-3-030-55089-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55089-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55088-2

  • Online ISBN: 978-3-030-55089-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics