Abstract
Attributed network embedding (ANE) maps nodes in network into the low-dimensional space while preserving proximities of both node attributes and network topology. Existing methods for ANE integrated node attributes and network topology by three fusion strategies: the early fusion (EF), the synchronous fusion (SF) and the late fusion (LF). In fact, different fusion strategies have their own advantages and disadvantages. In this paper, we develop a dual fusion model named as DFANE. DFANE integrated the EF and the LF into a united framework, where the EF captures the latent complementarity and the LF extracts the distinctive information from node attributes and network topology. Extensive experiments on eight real-world networks have demonstrated the effectiveness and rationality of the DFANE.
Supported by organization of the National Natural Science Foundation of China (61762090, 61262069, 61966036 and 61662086), The Natural Science Foundation of Yunnan Province (2016FA026), the Project of Innovative Research Team of Yunnan Province (2018HC019), Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN), and the National Social Science Foundation of China under Grant No. 18XZZ005.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gao, H., Huang, H.: Deep attributed network embedding. In: Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI 2018, pp. 3364–3370 (2018)
Jin, D., Li, B., Jiao, P., He, D., Zhang, W.: Network-specific variational auto-encoder for embedding in attribute networks. In: Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI 2019, pp. 2663–2669 (2019)
Mo, J., Gao, N., Zhou, Y., Pei, Y., Wang, J.: NANE: attributed network embedding with local and global information. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol. 11233, pp. 247–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02922-7_17
Pfeiffer III, J.J., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: modeling network structure with correlated attributes. In: Proceedings of the 23rd international conference on World wide web, pp. 831–842 (2014)
Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, pp. 1067–1077 (2015)
Yang, Y., Chen, H., Shao, J.: Triplet enhanced autoencoder: model-free discriminative network embedding. In: Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI 2019, pp. 5363–5369 (2019)
Zhang, Z., Yang, H., Bu, J., Zhou, S., Wang, C.: Anrl: attributed network representation learning via deep neural networks. In: Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI 2018, pp. 3155–3161 (2018)
Zhou, S., Yang, H., Wang, X., Bu, J., Wang, C.: Prre: personalized relation ranking embedding for attributed networks. In: the 27th ACM International Conference, pp. 823–832 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dong, K., Zhou, L., Kong, B., Zhou, J. (2020). A Dual Fusion Model for Attributed Network Embedding. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12274. Springer, Cham. https://doi.org/10.1007/978-3-030-55130-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-55130-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55129-2
Online ISBN: 978-3-030-55130-8
eBook Packages: Computer ScienceComputer Science (R0)