Abstract
We present the successful demonstration of the Autonomous navigation based on maneuvers under certain human positions for an omnidirectional KUKA YouBot robot. The integration of human posture detection and navigation capabilities in the robot was successfully accomplished thanks to the integration of the Robotic Operating System (ROS) and working environments of open source library of computer vision (OpenCV). The robotic operating system allows the implementation of algorithms on real time and simulated platforms, the open source library of computer vision allows the recognition of human posture signals through the use of the Faster R-CNN (regions with convolutional neural networks) deep learning approach, which for its application in OpenCV is translated to SURF (speeded up robust features), which is one of the most used algorithms for extracting points of interest in image recognition. The main contribution of this work is that the Estimation of Human Postures is a promise method in order to provide intelligence in Autonomous Navigation of Robot KUKA YouBot due to the fact that the Robot learn from the human postures and it is capable of perform a desired task during the execution of navigation or any other activity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dailami, F., Melhuish, C., Cecchi, F., Leroux, C.: Robotics innovation facilities. In: Advances in Robotics Research: From Lab to Market, pp. 29–45. Springer, Cham (2020)
Gordón, C., Encalada, P., Lema, H., León, D., Castro, C., Chicaiza, D.: Intelligent autonomous navigation of robot KUKA YouBot. In: Proceedings of SAI Intelligent Systems Conference, pp. 954–967. Springer, Cham (2019)
Gordón, C., Encalada, P., Lema, H., León, D., Peñaherrera, C.: Autonomous robot KUKA YouBot navigation based on path planning and traffic signals recognition. In: Proceedings of the Future Technologies Conference, pp. 63–78. Springer, Cham (2018)
Gordón, C., Lema, H., León, D., Encalada, P.: Human rescue based on autonomous robot kuka youbot with deep learning approach. In: 2019 Sixth International Conference on eDemocracy and eGovernment (ICEDEG), pp. 318–323. IEEE (2019)
Gordón, C., Encalada, P., Lema, H., León, D., Castro, C., Chicaiza, D.: Autonomous robot navigation with signaling based on objects detection techniques and deep learning networks. In: Proceedings of SAI Intelligent Systems Conference, pp. 940–953. Springer, Cham (2019)
KUKA YouBot Homepage. http://www.youbot-store.com/developers/software. Accessed 08 Jan 2020
Shardyko, I., Dalyaev, I., Nanyageev, I., Shmakov, O.: Inverse kinematics solution for robots with simplified tree structure and 5-DoF robot arms lacking wrist yaw joint. In: Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”, pp. 113–124. Springer, Singapore (2020)
Ahmed, S., Popov, V., Topalov, A., Shakev, N.: Hand gesture based concept of human-mobile robot interaction with leap motion sensor. IFAC-PapersOnLine 52(25), 321–326 (2019)
Takano, W., Haeyeon, L.E.E.: Action description from 2D human postures in care facilities. IEEE Robot. Autom. Lett. 5(2), 774–781 (2020)
Robot Operating System (ROS) Homepage. https://www.ros.org/. Accessed 07 Jan 2020
Open source computer vision (OpenCV) Homepage. https://opencv.org/. Accessed 06 Jan 2020
Bay H., Tuytelaars T., Van Gool L.: SURF: speeded up robust features. In: Leonardis A., Bischof H., Pinz A. (eds) Computer Vision – ECCV 2006. ECCV 2006. LNCS, vol. 3951. Springer, Heidelberg (2006)
NVIDIA Homepage. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/. Accessed 07 Jan 2020
TESLA Homepage. https://www.tesla.com/. Accessed 08 Jan 2020
Wang, L., Fan, X., Chen, J., Cheng, J., Tan, J., Ma, X.: 3D object detection based on sparse convolution neural network and feature fusion for autonomous driving in smart cities. Sustain. Cities Soc. 54, 102002 (2020)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp. 91–99 (2015)
Tucker, M., Aksaray, D., Paul, R., Stein, G.J., Roy, N.: Learning unknown groundings for natural language interaction with mobile robots. In: Robotics Research, pp. 317–333. Springer, Cham (2020)
Zhu, X., Chen, C., Zheng, B., Yang, X., Gan, H., Zheng, C., Yang, A., Mao, L., Xue, Y.: Automatic recognition of lactating sow postures by refined two-stream RGB-D faster R-CNN. Biosys. Eng. 189, 116–132 (2020)
Acknowledgments
The authors thank the Technical University of Ambato and the “Dirección de Investigación y Desarrollo” (DIDE) for their support in carrying out this research, in the execution of the project “Plataforma Móvil Omnidireccional KUKA dotada de Inteligencia Artificial utilizando estrategias de Machine Learnig para Navegación Segura en Espacios no Controlados”, project code: PFISEI27.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gordón, C., Barahona, S., Cumbajín, M., Encalada, P. (2021). Maneuvers Under Estimation of Human Postures for Autonomous Navigation of Robot KUKA YouBot. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-55180-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55179-7
Online ISBN: 978-3-030-55180-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)