Skip to main content

Evaluating Deep Learning Biases Based on Grey-Box Testing Results

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1250))

Included in the following conference series:

Abstract

The very exciting and promising approaches of deep learning are immensely successful in processing large real world data sets, such as image recognition, speech recognition, and language translation. However, much research discovered that it has biases that arise in the design, production, deployment, and use of AI/ML technologies. In this paper, we first explain mathematically the causes of biases and then propose a way to evaluate biases based on testing results of neurons and auto-encoders in deep learning. Our interpretation views each neuron or autoencoder as an approximation of similarity measurement, of which grey-box testing results can be used to measure biases and finding ways to reduce them. We argue that monitoring deep learning network structures and parameters is an effective way to catch the sources of biases in deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., West, S.M., Richardson, R., Schultz, J. and Schwartz, O.: AI now report 2018. AI Now Institute at New York University (2018)

    Google Scholar 

  2. Binns, R.: Fairness in machine learning: lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency, pp. 149–159, January2018

    Google Scholar 

  3. https://www.partnershiponai.org/. Accessed January 2020

  4. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine learning. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 329–338. ACM, January 2019

    Google Scholar 

  5. Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning. arXiv preprint [CS] arXiv:1808.00023, 31 July 2018

  6. https://www.tensorflow.org/. Accessed January 2020

  7. https://keras.io/. Accessed January 2020

  8. https://pytorch.org/. Accessed January 2020

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097–1105, 03–06 December 2012, Lake Tahoe, Nevada (2012)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Feng, X., Zhang, Y., Glass, J.: Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1759–1763, May 2014

    Google Scholar 

  12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper Saddle River (2009)

    MATH  Google Scholar 

  13. https://nlp.stanford.edu/pubs/clark2019what.pdf. Accessed January 2020

  14. Lei, N., Su, K., Cui, L., Yau, S.-T., Gu, D.X.: A geometric view of optimal transportation and generative model. arXiv: 1710.05488. https://arxiv.org/abs/1710.05488. Accessed November 2019

  15. https://www.youtube.com/watch?v=5-Kqb80h9rk. Accessed November 2019

  16. https://arxiv.org/abs/1611.03530. Accessed November 2019

  17. https://arxiv.org/pdf/1806.09777.pdf. Accessed November 2019

  18. Li, J.J., Rossikova, Y., Morreal, P.: Natural language translator correctness prediction. J. Comput. Sci. Appl. Inf. Technol. 1(1), 2–11 (2016). ISSN Number 2474–9257

    Article  Google Scholar 

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  21. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large Scale Kernel Machines. MIT Press, Cambridge (2007)

    Google Scholar 

  22. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  23. Pryzant, R., Richard, D.M., Dass, N., Kurohashi, S., Jurafsky, D., Yang, D.: Automatically neutralizing subjective bias in text. https://arxiv.org/abs/1911.09709. Accessed March 2020

Download references

Acknowledgments

We would like to thank Kean STEMPact program for supporting us to conduct this research in the summer of 2019 and Google’s subsequent support through a TensorFlow research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jenny Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jenny Li, J., Silva, T., Franke, M., Hai, M., Morreale, P. (2021). Evaluating Deep Learning Biases Based on Grey-Box Testing Results. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_48

Download citation

Publish with us

Policies and ethics