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Abstract. Deep Metric Learning (DML) approaches learn to represent inputs to 

a lower-dimensional latent space such that the distance between representations 

in this space corresponds with a predefined notion of similarity. This paper 

investigates how the mapping element of DML may be exploited in situations 

where the salient features in arbitrary classification problems vary over time or 

due to changing underlying variables. Examples of such variable features include 

seasonal and time-of-day variations in outdoor scenes in place recognition tasks 

for autonomous navigation and age/gender variations in human/animal subjects 

in classification tasks for medical/ethological studies. Through the use of 

visualisation tools for observing the distribution of DML representations per each 

query variable for which prior information is available, the influence of each 

variable on the classification task may be better understood. Based on these 

relationships, prior information on these salient background variables may be 

exploited at the inference stage of the DML approach by using a clustering 

algorithm to improve classification performance. This research proposes such a 

methodology establishing the saliency of query background variables and 

formulating clustering algorithms for better separating latent-space 

representations at run-time. The paper also discusses online management 

strategies to preserve the quality and diversity of data and the representation of 

each class in the gallery of embeddings in the DML approach. We also discuss 

latent works towards understanding the relevance of underlying/multiple 

variables with DML. 

Keywords: Deep Metric Learning, Variable Features, Dependent Variables, 

Computer Vision. 

1 Introduction 

Deep Learning has great achievements in computer vision for various classification and 

regression tasks in terms of accuracy, generalisability and robustness. However, to 

achieve this performance require training on hundreds or thousands of images and very 

large datasets. Fine-tuning these models for fine-grained visual recognition tasks is not 

always straightforward however and has prompted the creation of a type of architecture 

for this type of problem known as metric learning. Metric Learning is popular in 



Computer Vision for tasks such as face verification/recognition [1], person re-

identification [2, 3], 3D shape retrieval [4] and landmark recognition [5] and is also 

used in other fields, e.g. for Question Paraphrase Retrieval in Speech Recognition [6], 

music classification [7] and bioacoustic classification [8] from audio data and gesture 

recognition from accelerometer data [9]. In Section 2, we will further define the 

research problems relevant to our research and in Section 3 we will introduce the 

background theory of Metric Learning for the reader. 

 

The challenges of fine-grained visual recognition relate to two aspects: inter-class 

similarity and intra-class variance. In Section 4, this paper will review some 

methodologies which have been proposed in recent research to optimize these two 

attributes of the embedding space of DML, e.g. through learning dependent 

relationships in the fields of multi-label classification and newly proposed cost 

functions, and also methods which exploit the embedding space for interpreting the 

inner workings of the neural network. In Section 5, this paper will also propose a unique 

approach to improving classification accuracy of DML in any arbitrary applications 

through the injection of apriori knowledge of dependent variables into a clustering 

algorithm appended to the inference pipeline of the DML approach. Examples of such 

variable features include seasonal and time-of-day variations in outdoor scenes in place 

recognition tasks for autonomous navigation [5], age/gender variations in 

human/animal subjects in medical/ethological studies [10] and operator/time-of-shift 

variations in industrial automation tasks. We will also propose an online management 

strategy to preserve the quality and diversity of data and the representation of each class 

in the gallery of embeddings in the DML approach. Finally, in Section 8, this paper will 

conclude with a discussion of our findings to date and of future work which is currently 

being actively engaged in follow-up this work. 

 

2 Problem Definition 

In the field of deep learning, the quality of input data is often more important than 

the model architecture and training regimen. The challenges of dataset management 

include ensuring the dataset is correctly labelled, balanced and contains a sufficient 

amount of data. As well as this, the categories to be classified must also be chosen 

carefully at the task definition stage to minimize intra-class variance, i.e. it is harder to 

train a deep learning network to reliably classify ‘animals’ than it is to train one to 

classify just ‘cats’ or ‘dogs’. However, breaking down the categories to a low enough 

level can be difficult, requiring the judgement of an application expert and may 

introduce unwanted bias. Furthermore, system maintenance does not end once the 

problem is defined and the model is trained. In situations where salient features to the 

classification problem vary depending on auxiliary variables, it would be useful to 

leverage these auxiliary variables (if they are known apriori to classification) to narrow 

down the classification results to instances which are more likely in light of this new 

knowledge. 



2.1 One-Shot Learning 

The term  One-Shot Learning represents a still-open challenge in computer vision to 

learn much information about an object category from just one image. Few-shot and 

zero-shot learning are similar classification problems but with different requirements 

on how many training examples are available. Few-shot learning, sometimes called 

low-shot learning often falls under the category of OSL and denotes that multiple 

images of new object categories are available rather than just one. Zero-shot learning 

algorithms aim at recognizing object instances belonging to novel categories without 

any training examples [11]. The motivation for this task lies not only in the fact that 

humans, even children, can usually generalize after just one example of a given object 

but also because models excelling at this task would have many useful applications. 

Example applications include facial recognition in smart devices, person re-

identification in security applications as well as miscellaneous applications across 

industry, e.g. fine-grained grocery product recognition by [13], drug discovery  in the 

pharmaceutical industry [12], stable laser vision seam-tracking systems [13] and the 

detection of railway track switches, face recognition for monitoring operator shift in 

railways and anomaly detection for railway track monitoring [14, 15] 

. 

If it is desired for a conventional machine learning classifier to identify new classes 

on top of those it was trained to classify then the data for these classes must be added 

to the dataset (without unbalancing the dataset) and the model must be retrained 

entirely. This is why metric learning is so useful in these situations where information 

must be learnt about new object categories from one, or only a few, training samples. 

The general belief is that gradient-based optimization in high capacity classifiers 

requires many iterative steps over many examples to perform well. This type of 

optimization performs poorly in the few-shot learning task. 

In this setting, rather than there being one large dataset, there is a set of datasets, 

each with few annotated examples per class. Firstly, they would help alleviate data 

collection as thousands of labelled examples are not required to attain reasonable 

performance. Furthermore, in many fields, data exhibits the characteristic of having 

many different classes but few examples per class. Models that can generalize from a 

few examples would be able to capture this type of data effectively. 

Gradient descent-based methods weren’t designed specifically to perform well 

under the constraint of a set number of updates nor guarantee speed of convergence, 

beyond that they will eventually converge to a good solution after what could be many 

millions of iterations. Secondly, for each separate dataset considered, the network 

would have to start from a random initialization of its parameters.  

Transfer learning can be applied to alleviate this problem by fine-tuning a pre-

trained network from another task which has more labelled data; however, it has been 

observed that the benefit of a pre-trained network greatly decreases as the task the 

network was trained on diverges from the target task. What is needed is a systematic 

way to learn a beneficial common initialization that would serve as a good point to start 

training for the set of datasets being considered. This would provide the same benefits 



as transfer learning, but with the guarantee that the initialization is an optimal starting 

point for fine-tuning. [16] 

Over years many algorithms have been developed in order to tackle the problem of 

One-shot learning including: 

• Probabilistic models based on Bayesian learning [17, 18],  

• Generative models using probability density functions [19, 20],  

• Applying transformation to images [21, 22], 

• Using memory augmented neural networks [23], 

• Meta-learning [16, 24] and  

• Metric learning  

This paper will focus on the metric learning approach because of the way it learns 

to map it’s output to a latent space and how this may be exploited to infer relationships 

between feature variability and auxiliary background information. 

2.2 Fine-Grained Visual Categorization 

Fine-grained visual categorization (FGVC) aims to classify images of subordinate 

object categories that belong to a same entry-level category, e.g., different species of 

vegetation [25], different breeds of animals [26] or different makes of man-made 

objects [27]. 

The visual distinction between different subordinate categories is often subtle and 

regional, and such nuance is further obscured by variations caused by arbitrary poses, 

viewpoint change, and/or occlusion. Annotating such samples also requires 

professional expertise, making dataset creation in real-world applications of FGVC 

expensive and time-consuming. FGVC thus bears problem characteristics of few-shot 

learning.  

Most existing FGVC methods spend efforts on mining global and/or regional 

discriminative information from training data themselves. For example, state-of-the-art 

methods learn to identify discriminative parts from images of fine-grained categories 

through the use of methods for interpreting the layers of Convolutional Neural 

Networks, e.g. Grad-CAM [28]. However, the power of these methods is limited when 

only few training samples are available for each category. To break this limit, possible 

solutions include identifying auxiliary data that are more useful for (e.g., more related 

to the FGVC task of interest, and also better leveraging these auxiliary data. These 

solutions fall in the realm of domain adaptation or transfer learning and the latter has 

been implemented by training a model to encode (generic) semantic knowledge from 

the auxiliary data,e.g. unrelated categories of ImageNet, and the combined strategy of 

pretraining followed by fine-tuning alleviates the issue of overfitting. However, the 

objective of pre-training does not take the target FGVC task of interest into account, 

and consequently, such obtained models are suboptimal for transfer. An important issue 

to achieve good transfer learning is that data in source and target tasks should share 

similar feature distributions. If this is not the case, transfer learning methods usually 

learn feature mappings to alleviate this issue.  



Alternative approaches include some of those listed for one-shot learning above. 

Meta-learning has been adopted by [29] to directly identify source data/tasks that are 

more related to the target one, i.e. select more useful samples from the auxiliary data 

and remove noisy, semantically irrelevant images. Metric learning has been used 

similarly during training dataset creation through partitioning training images within 

each category into a few groups to form the triplet samples across different categories 

as well as different groups, which is called Group Sensitive TRiplet Sampling (GS-

TRS). Accordingly, the triplet loss function is strengthened by incorporating intra-class 

variance with GS-TRS, which may contribute to the optimization objective of triplet 

network [27]. 

Metric Learning has also been employed to overcome high correlation between 

subordinate classes by learning to represent objects so that data points from the same 

class will be pulled together while those from different classes should be pushed apart 

from each other. Secondly, the method overcomes large intra-class variation (e.g., due 

to variations in object pose) by allowing the flexibility that only a portion of the 

neighbours (not all data points) from the same class need to be pulled together. The 

method avoids difficulty in dealing with high dimensional feature vectors (which 

require O(d2) for storage and O(d3) for optimization) by proposing a multi-stage metric 

learning framework that divides the large-scale high dimensional learning problem to 

a series of simple subproblems, (achieving O(d) computational complexity) [27]. 

  

3 Metric Learning  

Generally speaking, Metric learning can be summarised by the learning of a 

similarity function which is trained to output a representation of its input, often called 

an embedding. During training, an architecture consisting of several identical entities 

of the network being trained is used along with a loss function to minimize the distance 

between embeddings of the same class (intra-class variability) and maximize the space 

between classes (inter-class similarity) so that an accurate prediction can be made. The 

resulting embedding of each query input is compared using some distance metric 

against a gallery of embeddings which have been collected from previous queries. In 

this way, queries need not necessarily be in the training data in order to be re-identified, 

making the methodology applicable to problems such as facial authentication and 

person re-identification in security and other one-shot or few-shot learning applications. 

 

Features extracted from classification networks show excellent performance in 

image classification, detection and retrieval, especially when fine-tuned for target 

domains. To obtain features of greater usefulness, end-to-end distance metric learning 

(DML) has been applied to train the feature extractor directly. DML skips the final 

SoftMax classification layer normally present at the end of CNN's and projects the raw 

feature vectors to learned feature space and then classifies input image based on how 

far they are from learned category instances as measured by a certain distance metric. 



Due to the simplicity and efficiency, the metric-based approach has been applied in 

industry for tasks like face recognition and person re-identification [30].  

The metric-based methods can achieve state-of-the-art performance in one-shot 

classification tasks, but the accuracy can be easily influenced when the test data comes 

from a different distribution [13] The way metric learning works in practice is to have 

a general model which is good at learning how to represent object categories as 

'embeddings', i.e. feature maps,  in a feature space such that they all categories are 

spaced far enough away from each other that they are distinguishable. The second step 

is to compare each embedding that this model generates for the input image with 

the embeddings of all previously seen objects. If the two embeddings are close enough 

in the feature space (shown in Fig. 1) beyond a certain threshold, then the object is 

identified. The library of embeddings that are compared from may be updated 

continuously by adding successfully identified embeddings by some inclusion 

prioritization. If an object is not identified, an external system, e.g. a human expert, 

may need to be consulted for the correct object label to be applied. 

Fig. 1. A t-SNE (T-distributed stochastic neighbour embedding) visualization of a feature space used 

in metric learning of the MNIST dataset [31]. 

3.1 Distance Metrics 

Two images, 𝑥1and 𝑥2, are compared by computing the distance d between their 

embeddings 𝑓(𝑥1) and 𝑓(𝑥2). If it is less than a threshold (a hyperparameter), it means 

that the two pictures are the same object category, if not, they are two different object 

categories. 



𝑑(𝑥1, 𝑥2) = ‖𝑓(𝑥1) − 𝑓(𝑥2)‖                                                                                  

(1) 

Where 𝑓 is defined as a parametric function  denoting the neural network described 

earlier that maps high-resolution inputs (images 𝑥1and 𝑥2) to low-resolution outputs 

(embeddings 𝑓(𝑥1) and 𝑓(𝑥2)). 

It is important to note the distance metric used as this will be used in the loss function 

which has to be differentiable with respect to the model’s weights to ensure that 

negative side effects will not take place. Distance function which are often used include 

the Euclidean distance or the squared Euclidean distance [32], the Manhattan distance 

(also known as Manhattan length, rectilinear distance, L1 distance or L1 norm, city 

block distance, Minkowski’s L1 distance, taxi-cab metric, or city block distance), dot 

product similarity, Mahalanobis, Minkowski, Chebychev, Cosine, Correlation, 

Hamming, Jaccard, Standardized Euclidean and Spearman distances [33] 

3.2 Loss Functions 

Loss in metric learning is defined as a measure of the distance of embeddings from 

sets of similar and dissimilar embeddings. For example,  if two images are of the same 

class, the loss is low if the distance between their associated feature vectors are low, 

and high if the distance between their associated feature vectors is high. Vice versa, if 

the two images are of different classes, the loss is only low when the image feature 

representations are far apart. There are many types of loss function as will become 

apparent in the next section which will discuss the different kinds of metric learning 

architecture. 

3.3 Architectures 

There are a number of different ways in which the base feature extractor is embedded 

in a metric learning architecture. By and large, the general attributes of these 

architectures include: 

a) an ability to learn generic image features suitable for making predictions about 

unknown class distributions even when very few examples from these new 

distributions are available 

b) amenability to training by standard optimization techniques in accordance with 

the loss function that determines similarity 

c) being unreliant on domain-specific knowledge to be effective.  

d) An ability to handle both sparse data and novel data. 

 
To develop a metric learning approach for image classification, the first step is to 

learn to discriminate between the class-identity of image pairs, i.e. to get an estimate of 
the probability that they belong to the same class or different classes. This model can 
then be used to evaluate new images, exactly one per novel class, in a pairwise manner 
against the test image. The pairing with the highest score according to the network is 
then awarded the highest probability. If this probability is above a certain threshold then 



the features learned by the model are sufficient to confirm or deny the identity test 
image from the set of stored class identities and ought to be sufficient for similar 
objects, provided that the model has been exposed to a good variety of scenarios to 
encourage variance amongst the learned features [34].  

 

 

Siamese Network 

A Siamese neural network has the objective to find how similar two comparable 

things are and are so-called as they consist of two identical subnetworks (usually either 

CNNs or autoencoders), which both have the same parameters and weights. The basic 

approach of Siamese networks can be replicated for almost any modality.  

 

 

 

Fig. 2. Siamese Network Architecture 

The output of many Siamese networks are fed to a contrastive loss function, which 

calculates the similarity between the pairs of images (𝑥𝑖 and 𝑥𝑗). The input image 𝑥𝑖 

with samples from both similar and dissimilar sets. For every pair (𝑥𝑖 and 𝑥𝑗), if they 

belong to the set of similar samples S, a label of 0 is assigned to the pair, otherwise, it 

a label of 1 is assigned. In the learning process, the system needs to be optimized such 

that the distance function 𝑑 is minimized for similar images and increased for dissimilar 

images according to the following loss function: 

𝐿( 𝑥𝑖 ,  𝑥𝑗  , 𝑦) = 𝑦. 𝑑(𝑥1, 𝑥2)2 + (1 − 𝑦)max (𝑚 − 𝑑(𝑥1, 𝑥2))2  (2) 

Triplet Network 

E
m

b
ed

d
in

g
s 

Prediction 



The triplet loss is the key to utilize the underlying connections among instances to 

achieve improved performance. In a similar manner to Siamese networks, triplet 

networks consist of three identical base feature extractors. The triplet loss function is a 

more advanced loss function using triplets of images: an anchor image 𝑥𝑎, a positive 

image 𝑥+ and a negative image 𝑥−, where (𝑥+ and 𝑥𝑎) have the same class labels and 

(𝑥− and 𝑥𝑎) have different class labels. Intuitively, triplet loss encourages to find an 

embedding space where the distances between samples from the same classes ( i.e., 

𝑥+ and 𝑥𝑎) are smaller than those from different classes ( i.e.,𝑥− and 𝑥𝑎) by at least a 

margin m (Fig. 3). Specifically, the triplet loss could be computed as follows:  

𝐿𝑡𝑝𝑙 =  ∑ max (0, 𝑚 + 𝑑(𝑛
𝑖=1 𝑥+, 𝑥𝑎) − 𝑑(𝑥−, 𝑥𝑎))    (3) 

 

Fig. 3 The Triplet Loss minimizes the distance between an anchor and a positive, both of which have the 

same identity, and maximizes the distance between the anchor and a negative of a different identity [35]. 

One advantage of the triplet loss is that it tries to be less “greedy” than the contrastive 

loss (which considers pairwise examples). The contrastive loss, on the other hand, only 

considers pairwise examples at a time, so in a sense, it is more greedy. The triplet loss 

is still too greedy however since it heavily depends on the selection of the anchor, 

negative, and positive examples. The magnet loss introduced by [36] tries to mitigate 

this issue by considering the distribution of positive and negative examples. [37] 

compares these different loss functions and found that End-to-end DML approaches 

such as Magnet Loss show state-of-the-art performance in several image recognition 

tasks although they yet to reach the performance of simple supervised learning. 

Another popular distance-based loss function is the center loss, which calculated 

on pointwise on 3d point cloud data. The emerging domain of geometric deep learning 

is an intriguing one as begin to leverage the information within 3D data. Center loss 

and triplet loss have been combined in the domain of 3d object detection to be able to 

achieve significant improvements compared with the state-of-the-art. After that, many 

variants of triplet loss have been proposed. For example, PDDM [38] and Histogram 

Loss [39] use quadruplets.  

 

Quadruplet Network 

The quadruplet network was designed on the intuition that more 

instances/replications of the base network as shown in Fig. 4) lead to better performance 

in the learning process. Therefore a new network structure was introduced by adding 

as many instances into a tuple as possible (including a triplet and multiple pairs) and 

connect them with a novel loss combining a pair-loss (which connects outputs of 

exemplar branch and instances branch) and a triplet based contractive-loss (which 

connects positive, negative and exemplar branches) [29, 40]. Beyond quadruplets, more 



recent works have used networks with even more instances, such as the n-pair loss [41] 

and Lifted Structure [39] which place constraints on all images in batches. 

 

 

Fig. 4 Quadruplet Network 

3.4 The head of the network architecture 

The attributes of the network head where the replica base networks meet are also 
influential on performance. Networks which have been used at this stage include  (e.g. 
which may be a fully-connected layer, a SoftMax layer or a direct throughput. 

Another attribute that is controlled at the network head is the level of data 
augmentation. Data augmentation is a key step to ensuring the model has been exposed 
to sufficient variance at the training phase that is representative of the real world 
conditions. By rotating, blurring, or cropping image data, synthetic images can be 
created that approximately mirror the distribution of images in the original dataset. This 
method is not perfect, however — it provides a regularizing effect that may be unwanted 
if the network is already not performing well in training. It is worth noting that training 
takes significantly longer when data augmentation is applied, e.g. it takes 10 times 
longer if we apply flip augmentation with 5 crops of each image, because a total of 10 
augmentations per image needs to be processed (2 flips times 5 crops).  

Another set of hyperparameters is how the embeddings of the various 
augmentations should be combined. When training using the Euclidean metric in the 
loss, simply taking the mean is what makes the most sense. But if one, for example, 
trains a normalized embedding, The embeddings must be re-normalized after averaging 
at the aggregation stage in the head network. Fig. 5 shows how the network head links 
these attributes. 

 

Fig. 5 The metric learning graph in Tensorboard 



 

4 Related Work 

4.1 Dependent Variables 

The loss function design in metric learning could be a subtle way of dealing with 
high degrees of variance due to dependent variables. The contrastive loss pulls all 
positives close, while all negatives are separated by a fixed distance. However, it could 
be severely restrictive to enforce such a fixed distance for all negatives. This motivated 
the triplet loss, which only requires negatives to be farther away than any positives on 
a per-example basis, i.e., a less restrictive relative distance constraint. However, all the 
aforementioned loss functions formulate relevance as a binary variable. The use of a 
ladder loss has been proposed by (Zhou et al., no date) to extend the triplet loss 
inequality to a more general inequality chain, which implements variable push-away 
margins according to respective relevance degrees measured by a proper Coherent 
Score metric.  



4.2 Multi-label/ Multi-Feature/Muti-Task Learning 

Multi-task learning can be seen as a form of inductive transfer which can help 

improve a model by introducing inductive bias. The inductive bias in the case of multi-

task learning is produced by the sheer existence of multiple tasks, which causes the 

model to prefer the hypothesis that can solve more than one task. Multi-task learning 

usually leads to better generalization [43]. Multi-label metric learning extends metric 

learning to deal with multiple variables with the same network. Instances with the more 

different labels are spread apart, but ones with identical labels will concentrate together. 

Therefore, introducing more variables means that the latent space is distributed in a 

more meaningful way in relation to the application domain 

 

It has been proposed in recent work that multiple features should be used for retrieval 

tasks to overcome the limitation of a single feature and further improve the 

performance. As most conventional distance metric learning methods fail to integrate 

the complementary information from multiple features to construct the distance metric, 

a novel multi-feature distance metric learning method for non-rigid 3D shape retrieval 

which can make full use of the complementary geometric information from multiple 

shape features has been presented [4].  

 

An alternative formulation for multi-task learning has been proposed by [44] who 

use a recent version of the K Nearest Neighbour (KNN) algorithms(large margin 

nearest neighbour) but instead of relying on separating hyperplanes, its decision 

function is based on the nearest neighbour rule which inherently extends to many 

classes and becomes a natural fit for multi-task learning [44]. This approach is 

advantageous as the feature space generated from Metric Learning crucially determines 

the performance of the KNN algorithm, i.e. the learned latent space is preserved, KNN 

just solves the multi-label problem within. 

5 Our Approach 

5.1 Using the Latent Space to understand Dependent Variables 

Often the feature vector or embedding output is a 128 x1 vector or something of that 

order meaning that the latent space has 128 dimensions and therefore impossible for 

humans to visualise. There are tools, however, for dimensionality reduction of the latent 

space, e.g. PCA (Principal Component Analysis) and t-SNE (T-distributed stochastic 

neighbour embedding) are available on Tensorboard [45] 



Fig. 6 (a) PCA (Principle Component Analysis) and (b) t-SNE (T-Distributed 

Stochastic Neighbour Embedding) projections to 3 dimensions of a latent space with 

1024 embeddings. 

 

Many works have used these visualisation tools to interpret the performance of the 

DML model [29], as well as breakdown attributes of the input relevant to the 

application as demonstrated by [46] who map transient scene attributes a small number 

of intuitive dimensions to allow characteristics such as level of snow/sunlight/cloud 

cover to be identified in each image of a scene.  

 
Fig. 7 A Visualisation with images corresponding to each embedding as shown 

here in work comparing the performance of (a) triplet loss and (b) quadruplet loss and 

assess attributes such as l intra-class variation and a large inter-class variation [29]. 

(a) (b) 



 

 
 

Fig. 8 Embeddings may also be colourised according to the state of background 

variables, revealing distributions in the latent space which can lead to better 

understandings and inference results. 

5.2 Clustering in the latent space based on Auxiliary background variables 

In situations where salient features to the classification problem vary depending on 

auxiliary variables, it would be useful to leverage these auxiliary variables (if they are 

known apriori to classification) to narrow down the classification results to instances 

which are more likely in light of this new knowledge. Better still, if a clustering 

algorithm, e.g. k-means clustering, could be formulated taking as input the salient 

background variables and outputting a function which maps the latent space to valid 

classifications. For specificity, we take the example of the cross-season correspondence 

dataset [46]. As depicted in Fig. 9, this dataset could be used in future work to prove 

our proposition that clustering the latent space according to the known time of year may 

be used to minimise the inter-class similarity to below the acceptable threshold, 𝜏, used 

at the classification stage. 

 



 
Fig. 9 A PCA projection of the latent space in DML showing how priori knowledge 

of background variables, e.g. seasonal variations in outdoor scenes in place 

recognition, may be used to minimize the intra-class variance and inter-class 

similarity such that the distance threshold, 𝜏, is less than the distance between classes, 

d(S_0,0, S_1,0). 

5.3 Gallery Management 

We propose that a function to select all embeddings for each class, delete old 

embeddings given there are more than N (an arbitrary number which may change based 

on performance results) embeddings for a class and then to compute and remove 

outliers by some method, e.g. Median Absolute Deviation (MAD) that the 

representativity of the gallery embeddings of the ground truth, and hence classification 

accuracy could be improved. 



The embeddings are typically written into the HDF5 file in many of the GitHub 
repositories of previous work. This file format is useful for accessing large amounts of 
data quickly, however, it does not facilitate the removal of data entries as is desired, 
e.g. for removing old/noisy embeddings from the gallery over time. 

Also, the integration of adaptive thresholding [47] or deep variational metric 

learning [48] which are methods which allow the distance threshold under which query 

embeddings must be from embeddings in the gallery to be classified variant to the 

distribution of embeddings could improve results even more substantially with our 

proposed method for gallery maintenance. 
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7 Conclusion 

This paper investigates how the mapping element of DML may be exploited in 

situations where the salient features in arbitrary classification problems vary dependent 

on auxiliary background variables. Through the use of visualisation tools for observing 

the distribution of DML representations per each query variable for which prior 

information is available, the influence of each variable on the classification task may 

be better understood. Based on these relationships, prior information on these salient 

background variables may be exploited at the inference stage of the DML approach by 

using a clustering algorithm to improve classification performance. This research 

proposes such a methodology establishing the saliency of query background variables 

and formulating clustering algorithms for better separating latent-space representations 

at run-time. The paper also discusses online management strategies to preserve the 

quality and diversity of data and the representation of each class in the gallery of 

embeddings in the DML approach. We also discuss latent works towards understanding 

the relevance of underlying/multiple variables with DML. 

 

7.1 Future Work 

Performance comparison with existing not been achieved in this investigation work, 

however, the concept has promising future results, and the obvious next step in this 

investigation is to implement our approach on a publically available dataset to ensure 

reproducibility. The implementation of the proposed solution may be performed, for 

example, using the 3DWF dataset which contains demographic data such as age or 

gender is provided for every subject of a face dataset. By taking age, gender and 



ethnicity as the desired output variables in a multi-task metric learning approach 

primarily aimed at age estimation from 3D face data. We propose to project the 

discovered latent space to a representation with dimensions/directions for age, gender 

and ethnicity. In this way, we may demonstrate how our approach may be used to 

interpret relationships between binary, ordinal, continuous and seemingly nominal 

variables. 

 

User interface could be the difference between powerful machine learning tools 

being a black box that may or not be trusted or a cognitive tool that extends human 

capabilities at understanding complicated data streams. Reasoning about data through 

representations can be useful even for kinds of data we understand well because it can 

make explicit and quantifiable things that are normally tacit and subjective. We propose 

that the latent space occupied by the representation discovered by metric learning may 

be exploited. 
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