Skip to main content

CapsNet vs CNN: Analysis of the Effects of Varying Feature Spatial Arrangement

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1251))

Included in the following conference series:

Abstract

Despite the success over the recent years, convolutional neural network (CNN) has a major limitation of the inability to retain spatial relationship between learned features in deeper layers. Capsule network with dynamic routing (CapsNet) was introduced in 2017 with a speculation that CapsNet can overcome this limitation. In our research, we created a suitable collection of datasets and implemented a simple CNN model and a CapsNet model with similar complexity to test this speculation. Experimental results show that both the implemented CNN and CapsNet models have the ability to capture the spatial relationship between learned features. Counterintuitively, our experiments show that our CNN model outperforms our CapsNet model using our datasets. This implies that the speculation does not seem to be entirely correct. This might be due to the fact that our datasets are too simple, hence requiring a simple CNN model. We further recommend future research to be conducted using deeper models and more complex datasets to test the speculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/MMU-VisionLab/CapsNet-vs-CNN.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  4. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. Nair, P., Doshi, R., Keselj, S.: Pushing the limits of capsule networks. Technical note (2018)

    Google Scholar 

  7. Algamdi, A.M., Sanchez, V., Li, C.T.: Learning temporal information from spatial information using CapsNets for human action recognition. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 3867–3871 (2019)

    Google Scholar 

  8. Xi, E., Bing, S., Jin, Y.: Capsule network performance on complex data. arXiv preprint arXiv:1712.03480 (2017)

  9. Xiang, C., Zhang, L., Tang, Y., Zou, W., Xu, C.: MS-CapsNet: a novel multi-scale capsule network. IEEE Signal Process. Lett. 25(12), 1850–1854 (2018)

    Article  Google Scholar 

  10. Chidester, B., Do, M.N., Ma, J.: Rotation equivariance and invariance in convolutional neural networks. arXiv preprint arXiv:1805.12301 (2018)

  11. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  12. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  14. Palaz, D., Magimai-Doss, M., Collobert, R.: Analysis of CNN-based speech recognition system using raw speech as input. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  15. Zhang, C., Liu, W., Ma, H., Fu, H.: Siamese neural network based gait recognition for human identification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2832–2836 (2016)

    Google Scholar 

  16. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Zhang, X.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

  17. Tzelepi, M., Tefas, A.: Human crowd detection for drone flight safety using convolutional neural networks. In: 25th European Signal Processing Conference (EUSIPCO), pp. 743–747. IEEE (2017)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  19. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Proceedings of the 21th International Conference on Artificial Neural Networks-Volume Part I, pp. 44–51 (2011)

    Google Scholar 

  20. LaLonde, R., Bagci, U.: Capsules for object segmentation. arXiv preprint arXiv:1804.04241 (2018)

Download references

Acknowledgment

The authors are grateful to the Ministry of Higher Education, Malaysia and Multimedia University for the financial support provided by the Fundamental Research Grant Scheme (MMUE/150030) and MMU Internal Grant Scheme (MMUI/170110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugenteraan Manogaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manogaran, U., Wong, Y.P., Ng, B.Y. (2021). CapsNet vs CNN: Analysis of the Effects of Varying Feature Spatial Arrangement. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1251. Springer, Cham. https://doi.org/10.1007/978-3-030-55187-2_1

Download citation

Publish with us

Policies and ethics