Skip to main content

AIS Ship Trajectory Clustering Based on Convolutional Auto-encoder

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1251))

Included in the following conference series:

Abstract

Ship trajectory anomaly detection, route planning, location prediction, collision detection and other issues have become the main research directions in the field of ocean navigation. Ship trajectory clustering is the key to address these problems. By mining the motion patterns of ship trajectory, those similar trajectories are grouped into the same category. Traditional trajectory clustering method usually needs to select the Spatio-temporal trajectory measurement method based on the data volume, computational complexity, noise and other influencing factors. The selection of optimal similarity measure formula needs prior knowledge and extensive experimentation, resulting in computational intensive and time-consuming. In this paper, we propose a ship trajectory motion pattern extraction algorithm based on one-dimensional convolutional auto-encoder without Spatio-temporal trajectory measurement methods. By extracting the low-dimensional representation of the ship’s trajectory, our approach can keep the sequence of trajectory points and reduce the distance calculation bias. The experimental results show that our proposed algorithm has good clustering performance while preserving the main motion characteristics of ship trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Guillarme, N., Lerouvreur, X.: Unsupervised extraction of knowledge from S-AIS data for maritime situational awareness. In: The 16th International Conference on Information Fusion (FUSION), pp. 2025–2032 (2013)

    Google Scholar 

  2. Dahlbom, A., Niklasson, L.: Trajectory clustering for coastal surveillance. In: International Conference on Information Fusion, pp. 9–12. IEEE (2007)

    Google Scholar 

  3. Wang, L., Dong, M.: Detection of abnormal human behavior using a matrix approximation-based approach. In: 13th International Conference on Machine Learning and Applications (ICMLA), pp. 324–329 (2014)

    Google Scholar 

  4. Yuan, Y., Feng, Y., Lu, X.: Statistical hypothesis detector for abnormal event detection in crowded scenes. IEEE Trans. Cybern. 47(11), 3597–3608 (2017)

    Article  Google Scholar 

  5. Zhao, W., Zhang, Z., Huang, K.: Gestalt laws based tracklets analysis for human crowd understanding. Pattern Recogn. 75, 112–127 (2018)

    Article  Google Scholar 

  6. Chaker, R., Al Aghbari, Z., Junejo, I.N.: Social network model for crowd anomaly detection and localization. Pattern Recogn. 61, 266–281 (2017)

    Article  Google Scholar 

  7. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 255–266. ACM (2010)

    Google Scholar 

  8. Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov models. IEEE Trans. Image Process. 16(7), 1912–1919 (2007)

    Article  MathSciNet  Google Scholar 

  9. Yao, T., Wang, Z., Xie, Z., Gao, J., Feng, D.D.: Learning universal multiview dictionary for human action recognition. Pattern Recogn. 64, 236–244 (2017)

    Article  Google Scholar 

  10. Kumar, S., Dai, Y., Li, H.: Spatio-temporal union of subspaces for multi-body non-rigid structure-from-motion. Pattern Recogn. 71, 428–443 (2017)

    Article  Google Scholar 

  11. Atev, S., Masoud, O., Papanikolopoulos, N.: Learning traffic patterns at intersections by spectral clustering of motion trajectories. In: IEEE Intelligent Robots and Systems, pp. 4851–4856 (2006)

    Google Scholar 

  12. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: International Symposium on Spatial and Temporal Databases, pp. 441–459. Springer (2007)

    Google Scholar 

  13. Yuan, G., Sun, P., Zhao, J., Li, D., Wang, C.: A review of moving object trajectory clustering algorithms. Artif. Intell. Rev. 47(1), 123–144 (2016). https://doi.org/10.1007/s10462-016-9477-7

    Article  Google Scholar 

  14. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  15. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, pp. 1–281 (1998)

    Google Scholar 

  16. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery Data Mining (KDD), pp. 226–231 (1996)

    Google Scholar 

  17. Besse, P.C., Guillouet, B., Loubes, J.M., Royer, F.: Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 17(11), 3306–3317 (2016)

    Article  Google Scholar 

  18. Ying, J.J.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 34–43 (2011)

    Google Scholar 

  19. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 54–63 (2011)

    Google Scholar 

  20. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: IEEE International Conference on Data Engineering (ICDE), pp. 617–628 (2018)

    Google Scholar 

  21. Yao, D., Zhang, C., Zhu, Z., et al.: Learning deep representation for trajectory clustering. Expert Syst. 35, 1–16 (2018)

    Article  Google Scholar 

  22. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 1–41 (2015)

    Article  Google Scholar 

  23. Tu, E., Zhang, G., Rachmawati, L., et al.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey. IEEE Trans. Intell. Transp. Syst. PP(99), 1–24 (2016)

    Google Scholar 

  24. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings 13th ACM SIGKDD International Conference Knowledge Discovery Data Mining, pp. 330–339 (2007)

    Google Scholar 

  25. Higgs, B., Abbas, M.M.: Segmentation and clustering of car-following behavior: recognition of driving patterns. IEEE Trans. Intell. 16, 81–90 (2015)

    Article  Google Scholar 

  26. Zhang, C., Zhang, K., Yuan, Q., et al.: GMove: group-level mobility modeling using geo-tagged social media. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1305–1314. ACM (2016)

    Google Scholar 

  27. Liu, S., Ni, L.M., Krishnan, R.: Fraud detection from taxis’ driving behaviors. IEEE Trans. Veh. Technol. 63(1), 464–472 (2014)

    Article  Google Scholar 

  28. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International, pp. 491–502 (2005)

    Google Scholar 

  29. Jiang, B., Tian, D., Tang, Y., et al.: A survey on trajectory clustering analysis. 1–40 (2018)

    Google Scholar 

  30. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  31. Liu, M.-Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy-rate clustering: cluster analysis via maximizing a submodular function subject to a Matroid Constraint. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 99–112 (2014)

    Article  Google Scholar 

  32. Chen, J., Wang, R., Liu, L., Song, J.: Clustering of trajectories based on hausdorff distance. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1940–1944. IEEE (2011)

    Google Scholar 

  33. Shao, Z., Li, Y.: On integral invariants for effective 3-D motion trajectory matching and recognition. IEEE Trans. Cybern. 46(2), 511–523 (2016)

    Article  Google Scholar 

  34. Bautista, M.A., Hernández-Vela, A., Escalera, S., Igual, L., Pujol, O., Moya, J., Violant, V., Anguera, M.T.: A gesture recognition system for detecting behavioral patterns of ADHD. IEEE Trans. Cybern. 46(1), 136–147 (2016)

    Article  Google Scholar 

  35. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. Inf. Syst. 26(1), 35–58 (2001)

    Article  MATH  Google Scholar 

  36. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 12–14 (2007)

    Google Scholar 

  37. Tang, W., Pi, D., He, Y.: A density-based clustering algorithm with sampling for travel behavior analysis. Lecture Notes in Computer Science, pp. 231–239 (2016)

    Google Scholar 

  38. Huanhuan, L., Jingxian, L., Kefeng, W., et al.: Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access 6, 58939–58954 (2018)

    Article  Google Scholar 

  39. Zhen, R., Jin, Y., Hu, Q., et al.: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naive bayes classifier. J. Navig. 70(03), 648–670 (2017)

    Article  Google Scholar 

  40. Tong, X., Xiang, N., Zhu, D.: Analysis of urban resident travel behavior based on taxi GPS data. Comput. Telecommun. 56–59 (2012)

    Google Scholar 

  41. Sun, G.: Forecast of travel demand in hotspots based on taxi GPS trajectory data. Beijing Jiaotong University, pp. 1–84 (2019)

    Google Scholar 

  42. Sas, C., O’Hare, G., Reilly, R.: Virtual environment trajectory analysis: a basis for navigational assistance and scene adaptivity. Future Gener. Comput. Syst. 21(7), 1157–1166 (2005)

    Article  Google Scholar 

  43. Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: Proceedings of 23rd International Conference Very Large Data Bases (VLDB), pp. 186–195 (1997)

    Google Scholar 

  44. Ruspini, E.H.: Numerical methods for fuzzy clustering. Inf. Sci. 2(3), 319–350 (1970)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under grant No. 61962017, 61562019, 61662019, the High-level Talents Program of Hainan Province under Grant No. 2019RC088, and grants from State Key Laboratory of Marine Resource Utilization in South China Sea and Key Laboratory of Big Data and Smart Services of Hainan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Ye, C., Zhou, H., Ou, M., Cheng, B. (2021). AIS Ship Trajectory Clustering Based on Convolutional Auto-encoder. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1251. Springer, Cham. https://doi.org/10.1007/978-3-030-55187-2_39

Download citation

Publish with us

Policies and ethics