Abstract
Tensor decomposition is a popular tool for multi-dimensional data analysis. In particular, High-Order Singular Value Decomposition (HOSVD) is one of the most useful decomposition methods and has been adopted in many applications. Unfortunately, the computational cost of HOSVD is very high on large-scale tensor, and the desirable solution nowadays is to outsource the data to the clouds which perform the computation on behalf of the users. However, how to protect the data privacy against the possibly untrusted clouds is still a wide concern for users. In this paper, we design a new scheme called SHOSVD in the two-cloud model for secure outsourcing of tensor decomposition. At the core of our technique is the adoption of additive secret sharing. Our SHOSVD could guarantee the outsourced data privacy for users assuming no collusion between the two clouds. Moreover, it supports off-line users which means that no interaction between users and clouds is required during the computation process. We prove that our scheme is secure in the semi-honest model, and conduct the theoretical analyses regarding its computational and communicational overhead. The experiment results demonstrate that our scheme is of desirable accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Chang, L., Zhou, J., He, K.: Image compression based on truncated HOSVD. In: International Conference on Information Engineering and Computer Science, 2009. ICIECS 2009 (2010)
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15
Feng, J., Yang, L.T., Dai, G., Chen, J., Yan, Z.: An improved secure high-order-lanczos based orthogonal tensor SVD for outsourced cyber-physical-social big data reduction (2018)
Feng, J., Yang, L.T., Dai, G., Wang, W., Zou, D.: A secure higher-order lanczos-based orthogonal tensor SVD for big data reduction. IEEE Trans. Big Data 5(3), 355–367 (2018)
Feng, J., Yang, L.T., Zhu, Q., Choo, K.K.R.: Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment. IEEETrans. Dependable Secure Comput. 17, 857–868 (2018)
Francis, J.G.F.: The QR transformation. Comput. J. 4(4), 332–345 (1962)
Goldreich, O.: Foundations of Cryptography: Volume 2 Basic Applications. Cambridge University Press, New York (2009)
Lim, H., Kim, H.J.: Tensor-based tag emotion aware recommendation with probabilistic ranking. KSII Trans. Internet Inf. Syst. (TIIS) 13(12), 5826–5841 (2019)
Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preservingcnn feature extraction framework for mobile sensing. IEEE Trans. Dependable Secure Comput. (2019). https://doi.org/10.1109/TDSC.2019.2913362
Kim, J., Koo, D., Kim, Y., Yoon, H., Shin, J., Kim, S.: Efficient privacy-preserving matrix factorization for recommendation via fully homomorphic encryption. ACM Trans. Privacy Security (TOPS) 21(4), 17 (2018)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Kuang, L., Yang, L., Feng, J., Dong, M.: Secure tensor decomposition using fully homomorphic encryption scheme. IEEE Trans. Cloud Comput. 6(3), 868–878 (2015)
Kuang, L., Yang, L.T., Zhu, Q., Chen, J.: Secure tensor decomposition for big data using transparent computing paradigm. IEEE Trans. Comput. 68(4), 585–596 (2019)
Li, Q., Cascudo, I., Christensen, M.G.: Privacy-preserving distributed average consensus based on additive secret sharing. In: 27th European Signal Processing Conference (EUSIPCO), pp. 1–5 (2019)
Liedel, M.: Secure distributed computation of the square root and applications. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 277–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29101-2_19
Liu, L., Chen, R., Liu, X., Su, J., Qiao, L.: Towards practical privacy-preserving decision tree training and evaluation in the cloud. IEEE Trans. Inf. Forensics and Secur. 15, 2914–2929 (2020)
Liu, L., et al.: Privacy-preserving mining of association rule on outsourced cloud data from multiple parties. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 431–451. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_25
Liu, L., et al.: Toward highly secure yet efficient KNN classification scheme on outsourced cloud data. IEEE Internet Things J. 6(6), 9841–9852 (2019)
Liu, X., Deng, R.H., Choo, K.K.R., Weng, J.: An efficient privacy-preserving outsourced calculation toolkit with multiple keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016)
Liu, Y., Ma, Z., Liu, X., Ma, S., Ren, K.: Privacy-preserving object detection for medical images with faster R-CNN. IEEE Trans. Inf. Forensics Secur. 1 (2019). https://doi.org/10.1109/TIFS.2019.2946476
Luo, C., Salinas, S., Li, P.: Efficient privacy-preserving large-scale CP tensor decompositions, pp. 1–6 (2018)
Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving machine learning. In: IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)
Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: IEEE Symposium on Security and Privacy (SP), pp. 334–348. IEEE (2013)
Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. University of Landon. Ph.D. thesis, vol. 17(1), pp. 87–94 (1975)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707–721. ACM (2018)
Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_23
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Sidiropoulos, N.D., Sidiropoulos, N.D., Sidiropoulos, N.D.: Tensors for data mining and data fusion: models, applications, and scalable algorithms (2016)
Symeonidis, P.: ClustHOSVD: item recommendation by combining semantically enhanced tag clustering with tensor HOSVD. IEEE Trans. Syst. Man Cybern. Syst. 46(9), 1240–1251 (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J., Liu, L., Chen, R., Peng, W. (2020). SHOSVD: Secure Outsourcing of High-Order Singular Value Decomposition. In: Liu, J., Cui, H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science(), vol 12248. Springer, Cham. https://doi.org/10.1007/978-3-030-55304-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-55304-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55303-6
Online ISBN: 978-3-030-55304-3
eBook Packages: Computer ScienceComputer Science (R0)