Skip to main content

SHOSVD: Secure Outsourcing of High-Order Singular Value Decomposition

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12248))

Included in the following conference series:

  • 1299 Accesses

Abstract

Tensor decomposition is a popular tool for multi-dimensional data analysis. In particular, High-Order Singular Value Decomposition (HOSVD) is one of the most useful decomposition methods and has been adopted in many applications. Unfortunately, the computational cost of HOSVD is very high on large-scale tensor, and the desirable solution nowadays is to outsource the data to the clouds which perform the computation on behalf of the users. However, how to protect the data privacy against the possibly untrusted clouds is still a wide concern for users. In this paper, we design a new scheme called SHOSVD in the two-cloud model for secure outsourcing of tensor decomposition. At the core of our technique is the adoption of additive secret sharing. Our SHOSVD could guarantee the outsourced data privacy for users assuming no collusion between the two clouds. Moreover, it supports off-line users which means that no interaction between users and clouds is required during the computation process. We prove that our scheme is secure in the semi-honest model, and conduct the theoretical analyses regarding its computational and communicational overhead. The experiment results demonstrate that our scheme is of desirable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The proof of the security of \(\texttt {Rec}\), SC and Mul can be found in [10, 29] and [1] respectively.

References

  1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  2. Chang, L., Zhou, J., He, K.: Image compression based on truncated HOSVD. In: International Conference on Information Engineering and Computer Science, 2009. ICIECS 2009 (2010)

    Google Scholar 

  3. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  4. Feng, J., Yang, L.T., Dai, G., Chen, J., Yan, Z.: An improved secure high-order-lanczos based orthogonal tensor SVD for outsourced cyber-physical-social big data reduction (2018)

    Google Scholar 

  5. Feng, J., Yang, L.T., Dai, G., Wang, W., Zou, D.: A secure higher-order lanczos-based orthogonal tensor SVD for big data reduction. IEEE Trans. Big Data 5(3), 355–367 (2018)

    Article  Google Scholar 

  6. Feng, J., Yang, L.T., Zhu, Q., Choo, K.K.R.: Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment. IEEETrans. Dependable Secure Comput. 17, 857–868 (2018)

    Article  Google Scholar 

  7. Francis, J.G.F.: The QR transformation. Comput. J. 4(4), 332–345 (1962)

    Article  MathSciNet  Google Scholar 

  8. Goldreich, O.: Foundations of Cryptography: Volume 2 Basic Applications. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  9. Lim, H., Kim, H.J.: Tensor-based tag emotion aware recommendation with probabilistic ranking. KSII Trans. Internet Inf. Syst. (TIIS) 13(12), 5826–5841 (2019)

    Google Scholar 

  10. Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preservingcnn feature extraction framework for mobile sensing. IEEE Trans. Dependable Secure Comput. (2019). https://doi.org/10.1109/TDSC.2019.2913362

  11. Kim, J., Koo, D., Kim, Y., Yoon, H., Shin, J., Kim, S.: Efficient privacy-preserving matrix factorization for recommendation via fully homomorphic encryption. ACM Trans. Privacy Security (TOPS) 21(4), 17 (2018)

    Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kuang, L., Yang, L., Feng, J., Dong, M.: Secure tensor decomposition using fully homomorphic encryption scheme. IEEE Trans. Cloud Comput. 6(3), 868–878 (2015)

    Article  Google Scholar 

  14. Kuang, L., Yang, L.T., Zhu, Q., Chen, J.: Secure tensor decomposition for big data using transparent computing paradigm. IEEE Trans. Comput. 68(4), 585–596 (2019)

    Article  MathSciNet  Google Scholar 

  15. Li, Q., Cascudo, I., Christensen, M.G.: Privacy-preserving distributed average consensus based on additive secret sharing. In: 27th European Signal Processing Conference (EUSIPCO), pp. 1–5 (2019)

    Google Scholar 

  16. Liedel, M.: Secure distributed computation of the square root and applications. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 277–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29101-2_19

    Chapter  MATH  Google Scholar 

  17. Liu, L., Chen, R., Liu, X., Su, J., Qiao, L.: Towards practical privacy-preserving decision tree training and evaluation in the cloud. IEEE Trans. Inf. Forensics and Secur. 15, 2914–2929 (2020)

    Article  Google Scholar 

  18. Liu, L., et al.: Privacy-preserving mining of association rule on outsourced cloud data from multiple parties. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 431–451. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_25

    Chapter  Google Scholar 

  19. Liu, L., et al.: Toward highly secure yet efficient KNN classification scheme on outsourced cloud data. IEEE Internet Things J. 6(6), 9841–9852 (2019)

    Article  Google Scholar 

  20. Liu, X., Deng, R.H., Choo, K.K.R., Weng, J.: An efficient privacy-preserving outsourced calculation toolkit with multiple keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016)

    Article  Google Scholar 

  21. Liu, Y., Ma, Z., Liu, X., Ma, S., Ren, K.: Privacy-preserving object detection for medical images with faster R-CNN. IEEE Trans. Inf. Forensics Secur. 1 (2019). https://doi.org/10.1109/TIFS.2019.2946476

  22. Luo, C., Salinas, S., Li, P.: Efficient privacy-preserving large-scale CP tensor decompositions, pp. 1–6 (2018)

    Google Scholar 

  23. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving machine learning. In: IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)

    Google Scholar 

  24. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: IEEE Symposium on Security and Privacy (SP), pp. 334–348. IEEE (2013)

    Google Scholar 

  25. Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. University of Landon. Ph.D. thesis, vol. 17(1), pp. 87–94 (1975)

    Google Scholar 

  26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  27. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707–721. ACM (2018)

    Google Scholar 

  28. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_23

    Chapter  Google Scholar 

  29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  30. Sidiropoulos, N.D., Sidiropoulos, N.D., Sidiropoulos, N.D.: Tensors for data mining and data fusion: models, applications, and scalable algorithms (2016)

    Google Scholar 

  31. Symeonidis, P.: ClustHOSVD: item recommendation by combining semantically enhanced tag clustering with tensor HOSVD. IEEE Trans. Syst. Man Cybern. Syst. 46(9), 1240–1251 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Liu or Rongmao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Liu, L., Chen, R., Peng, W. (2020). SHOSVD: Secure Outsourcing of High-Order Singular Value Decomposition. In: Liu, J., Cui, H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science(), vol 12248. Springer, Cham. https://doi.org/10.1007/978-3-030-55304-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55304-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55303-6

  • Online ISBN: 978-3-030-55304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics