Skip to main content

A Novel Duplication Based Countermeasure to Statistical Ineffective Fault Analysis

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12248))

Included in the following conference series:

Abstract

The Statistical Ineffective Fault Analysis, SIFA, is a recent addition to the family of fault based cryptanalysis techniques. SIFA based attack is shown to be formidable and is able to bypass virtually all the conventional fault attack countermeasures. Reported countermeasures to SIFA incur overheads of the order of at least thrice the unprotected cipher. We propose a novel countermeasure that reduces the overhead (compared to all existing countermeasures) as we rely on a simple duplication based technique. In essence, our countermeasure eliminates the observation that enables the attacker to perform SIFA. The core idea we use here is to choose the encoding for the state bits randomly. In this way, each bit of the state is free from statistical bias, which renders SIFA unusable. Our approach protects against stuck-at faults and also does not rely on any side channel countermeasure. We show the effectiveness of the countermeasure through an open source gate-level fault attack simulation tool. Our approach is probably the simplest and the most cost effective.

A. Baksi—This work is partially supported by TUM CREATE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the terms ‘attack’ and ‘analysis’ interchangeably.

  2. 2.

    Available at https://github.com/emsec/VerFI.

  3. 3.

    An open-source research cell library, available at https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/.

  4. 4.

    The source code we use can be found at https://github.com/vinayby/VerFI.

References

  1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F., Schneider, T.: Impeccable circuits. Cryptology ePrint Archive, Report 2018/203 (2018). https://eprint.iacr.org/2018/203

  2. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis using VerFI. IACR Cryptology ePrint Archive 2019, 1312 (2019). https://eprint.iacr.org/2019/1312

  3. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T.: Protecting block ciphers against differential fault attacks without re-keying. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2018, Washington, DC, USA, 30 April–4 May 2018, pp. 191–194 (2018). https://doi.org/10.1109/HST.2018.8383913

  4. Baksi, A., Saha, D., Sarkar, S.: To infect or not to infect: a critical analysis of infective countermeasures in fault attacks. IACR Cryptology ePrint Archive 2019, 355 (2019). https://eprint.iacr.org/2019/355

  5. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17

    Chapter  Google Scholar 

  6. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: Craft: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019). https://tosc.iacr.org/index.php/ToSC/article/view/7396

  7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  9. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  10. Breier, J., Khairallah, M., Hou, X., Liu, Y.: A countermeasure against statistical ineffective fault analysis. Cryptology ePrint Archive, Report 2019/515 (2019). https://eprint.iacr.org/2019/515

  11. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_13

    Chapter  Google Scholar 

  12. Daemen, J., Dobraunig, C., Eichlseder, M., Gross, H., Mendel, F., Primas, R.: Protecting against statistical ineffective fault attacks. Cryptology ePrint Archive, Report 2019/536 (2019). https://eprint.iacr.org/2019/536

  13. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodoo cookbook. Cryptology ePrint Archive, Report 2018/767 (2018). https://eprint.iacr.org/2018/767

  14. De Mulder, E., Gierlichs, B., Preneel, B., Verbauwhede, I.: Practical DPA attacks on MDPL. In: 2009 First IEEE International Workshop on Information Forensics and Security (WIFS), pp. 191–195, December 2009

    Google Scholar 

  15. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(3), 547–572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-572

  16. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.-X.: Towards fresh and hybrid re-keying schemes with beyond birthday security. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 225–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2_14

    Chapter  Google Scholar 

  17. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_17

    Chapter  Google Scholar 

  18. Gruber, M., Probst, M., Tempelmeier, M.: Statistical ineffective fault analysis of GIMLI. CoRR abs/1911.03212 (2019). http://arxiv.org/abs/1911.03212

  19. He, W., Breier, J., Bhasin, S.: Cheap and cheerful: a low-cost digital sensor for detecting laser fault injection attacks. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 27–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_2

    Chapter  Google Scholar 

  20. Joye, M., Jean-Jacques, Q., Sung-Ming, Y., Yung, M.: Observability analysis - detecting when improved cryptosystems fail -. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 17–29. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_2

    Chapter  Google Scholar 

  21. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack countermeasures - application to AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, 9 September 2012, pp. 85–94 (2012). https://doi.org/10.1109/FDTC.2012.19

  22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  23. Ghalaty, N.F., Yuce, B., Schaumont, P.: Analyzing the efficiency of biased-fault based attacks. Cryptology ePrint Archive, Report 2015/663 (2015). https://eprint.iacr.org/2015/663

  24. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_13

    Chapter  Google Scholar 

  25. Ramezanpour, K., Ampadu, P., Diehl, W.: A statistical fault analysis methodology for the Ascon authenticated cipher. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA, 5–10 May 2019, pp. 41–50 (2019). https://doi.org/10.1109/HST.2019.8741029

  26. Saha, S., Jap, D., Roy, D.B., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.: A framework to counter statistical ineffective fault analysis of block ciphers using domain transformation and error correction. IEEE Trans. Inf. Forensics Secur. 15, 1905–1919 (2020). https://doi.org/10.1109/TIFS.2019.2952262

  27. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by simultaneous laser fault injections. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 36–46, August 2016

    Google Scholar 

  28. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits ii. Cryptology ePrint Archive, Report 2019/1369 (2019). https://eprint.iacr.org/2019/1369

  29. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-rail pre-charge logic style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 255–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_21

    Chapter  Google Scholar 

  30. Yen, S., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000). https://doi.org/10.1109/12.869328

  31. Sung-Ming, Y., Kim, S., Lim, S., Moon, S.: A countermeasure against one physical cryptanalysis may benefit another attack. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 414–427. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45861-1_31

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubhab Baksi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baksi, A., Kumar, V.B.Y., Karmakar, B., Bhasin, S., Saha, D., Chattopadhyay, A. (2020). A Novel Duplication Based Countermeasure to Statistical Ineffective Fault Analysis. In: Liu, J., Cui, H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science(), vol 12248. Springer, Cham. https://doi.org/10.1007/978-3-030-55304-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55304-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55303-6

  • Online ISBN: 978-3-030-55304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics