Skip to main content

Application of Human Factors Engineering Principles to the Design and Development of Medical Wearable Sensor for Cardiac Monitoring

  • Conference paper
  • First Online:
Human Interaction, Emerging Technologies and Future Applications III (IHIET 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1253))

  • 2646 Accesses

Abstract

The paper discusses the principles of human-centered design applied to the development of a medical wearable electrocardiogram (ECG) patch-like system. The following design issues are taken under consideration. Firstly, how to design wearable suitable for people of different size, gender and age. Secondly, how to ensure proper signal detection, both tactile and visual. Thirdly, how to provide reliable physical connections between the element of the hardware piece (electronics, adhesive base, housing). Fourthly, how to reach intuitiveness of the user-system interface. Fifthly, how to achieve appearance more of a consumer product rather than a medical device, as many people prefer such systems to be small, convenient, comfortable and give no indications about its actual function. Design decisions throughout the development cycle are based on analysis of several available sensors with analogous purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FDA: Applying Human Factors and Usability Engineering to Medical Devices. Guidance for Industry and Food and Drug Administration Staff (2016)

    Google Scholar 

  2. Glazkova, N., Fortin C., Podladchikova T.: Application of lean-agile approach for medical wearable device development. In: 14th Annual Conference System of Systems Engineering (SoSE), pp. 75–80. Anchorage, AK, USA (2019)

    Google Scholar 

  3. Harte, R., Quinlan, L., Glynn, L.: Human-centered design study: enhancing the usability of a mobile phone app in an integrated falls risk detection system for use by older adult users. JMIR mHealth and uHealth 5(5), e71 (2017)

    Article  Google Scholar 

  4. Glazkova, N., Podladchikova, T., Gerzer, R., Stepanova, D.: Non-invasive wearable ECG-patch system for astronauts and patients on Earth. J. Acta Astronaut. 166, 613–618 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Glazkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glazkova, N., Fortin, C., Podladchikova, T. (2021). Application of Human Factors Engineering Principles to the Design and Development of Medical Wearable Sensor for Cardiac Monitoring. In: Ahram, T., Taiar, R., Langlois, K., Choplin, A. (eds) Human Interaction, Emerging Technologies and Future Applications III. IHIET 2020. Advances in Intelligent Systems and Computing, vol 1253. Springer, Cham. https://doi.org/10.1007/978-3-030-55307-4_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55307-4_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55306-7

  • Online ISBN: 978-3-030-55307-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics