Skip to main content

A Matching-Integration-Verification Model for Multiple-Choice Reading Comprehension

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12275))

  • 1426 Accesses

Abstract

Multiple-choice reading comprehension is a challenging task requiring a machine to select the correct answer from a candidate answers set. In this paper, we propose a model following a matching-integration-verification-prediction framework, which explicitly employs a verification module inspired by the human being and generates judgment of each option simultaneously according to the evidence information and the verified information. The verification module, which is responsible for recheck information from matching, can selectively combine matched information from the passage and option instead of transmitting them equally to prediction. Experimental results demonstrate that our proposed model achieves significant improvement on several multiple-choice reading comprehension benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will release our code upon publication.

References

  1. Chen, Z., Cui, Y., Ma, W., Wang, S., Hu, G.: Convolutional spatial attention model for reading comprehension with multiple-choice questions (2018)

    Google Scholar 

  2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  3. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: Race: large-scale reading comprehension dataset from examinations. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 785–794 (2017)

    Google Scholar 

  4. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR (2019)

    Google Scholar 

  5. Ostermann, S., Modi, A., Roth, M., Thater, S., Pinkal, M.: Mcscript: a novel dataset for assessing machine comprehension using script knowledge. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (2018)

    Google Scholar 

  6. Ostermann, S., Roth, M., Modi, A., Thater, S., Pinkal, M.: Semeval-2018 task 11: machine comprehension using commonsense knowledge. In: Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 747–757 (2018)

    Google Scholar 

  7. Ostermann, S., Roth, M., Pinkal, M.: Mcscript2.0: a machine comprehension corpus focused on script events and participants. In: Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics, *SEM@NAACL-HLT 2019, Minneapolis, MN, USA, 6–7 June 2019, pp. 103–117 (2019)

    Google Scholar 

  8. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  9. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392 (2016)

    Google Scholar 

  10. Ran, Q., Li, P., Hu, W., Zhou, J.: Option comparison network for multiple-choice reading comprehension. arXiv preprint arXiv:1903.03033 (2019)

  11. Sun, K., Yu, D., Yu, D., Cardie, C.: Improving machine reading comprehension with general reading strategies. arXiv Computation and Language (2018)

    Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  13. Wang, S., Yu, M., Jiang, J., Chang, S.: A co-matching model for multi-choice reading comprehension. In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, 15–20 July 2018, vol. 2: Short Papers, pp. 746–751 (2018)

    Google Scholar 

  14. Xu, Y., Liu, J., Gao, J., Shen, Y., Liu, X.: Dynamic fusion networks for machine reading comprehension. arXiv preprint arXiv:1711.04964 (2017)

  15. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019, pp. 5754–5764 (2019)

    Google Scholar 

  16. Zhang, S., Zhao, H., Wu, Y., Zhang, Z., Zhou, X., Zhou, X.: Dual co-matching network for multi-choice reading comprehension. arXiv preprint arXiv:1901.09381 (2019)

  17. Zhang, S., Zhao, H., Wu, Y., Zhang, Z., Zhou, X., Zhou, X.: Dcmn+: dual co-matching network for multi-choice reading comprehension. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI) (2020)

    Google Scholar 

  18. Zhu, H., Wei, F., Qin, B., Liu, T.: Hierarchical attention flow for multiple-choice reading comprehension. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their insightful comments. We also thank Effyic Intelligent Technology (Beijing) for their computing resource support. This work was supported by in part by the National Key Research and Development Program of China under Grant No. 2016YFB0801003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, L., Hu, Y., Xie, Y., Wang, C., Hu, Y. (2020). A Matching-Integration-Verification Model for Multiple-Choice Reading Comprehension. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12275. Springer, Cham. https://doi.org/10.1007/978-3-030-55393-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55393-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55392-0

  • Online ISBN: 978-3-030-55393-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics