Skip to main content

Relationship-Aware Hard Negative Generation in Deep Metric Learning

  • Conference paper
  • First Online:
  • 1315 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12275))

Abstract

Data relationships and the impact of synthetic loss have not been concerned by previous sample generation methods, which lead to bias in model training. To address above problem, in this paper, we propose a relationship-aware hard negative generation (RHNG) method. First, we build a global minimum spanning tree for all categories to measure the data distribution, which is used to constrain hard sample generation. Second, we construct a dynamic weight parameter which reflects the convergence of the model to guide the synthetic loss to train the model. Experimental results show that the proposed method outperforms the state-of-the-art methods in terms of retrieval and clustering tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28(8), 4032–4044 (2019)

    Article  MathSciNet  Google Scholar 

  2. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2789 (2018)

    Google Scholar 

  3. Ge, W., Huang, W., Dong, D., Scott, M.R.: Deep metric learning with hierarchical triplet loss. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 272–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_17

    Chapter  Google Scholar 

  4. Grabner, A., Roth, P.M., Lepetit, V.: 3D pose estimation and 3D model retrieval for objects in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3022–3031 (2018)

    Google Scholar 

  5. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  6. Huang, C., Loy, C.C., Tang, X.: Local similarity-aware deep feature embedding. In: Advances in Neural Information Processing Systems, pp. 1262–1270 (2016)

    Google Scholar 

  7. Hunter, J.S.: The exponentially weighted moving average. J. Qual. Technol. 18(4), 203–210 (1986)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  9. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3DRR 2013), Sydney, Australia (2013)

    Google Scholar 

  10. Liu, Z., Wang, D., Lu, H.: Stepwise metric promotion for unsupervised video person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2429–2438 (2017)

    Google Scholar 

  11. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  12. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  13. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  15. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857–1865 (2016)

    Google Scholar 

  16. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  17. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  18. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular loss. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2593–2601 (2017)

    Google Scholar 

  19. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(Feb), 207–244 (2009)

    MATH  Google Scholar 

  20. Xu, X., Yang, Y., Deng, C., Zheng, F.: Deep asymmetric metric learning via rich relationship mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4076–4085 (2019)

    Google Scholar 

  21. Yu, H.X., Wu, A., Zheng, W.S.: Cross-view asymmetric metric learning for unsupervised person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 994–1002 (2017)

    Google Scholar 

  22. Yu, J., Gao, M., Song, Y., Zhao, Z., Rong, W., Xiong, Q.: Connecting factorization and distance metric learning for social recommendations. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp. 389–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3_33

    Chapter  Google Scholar 

  23. Yu, R., Dou, Z., Bai, S., Zhang, Z., Xu, Y., Bai, X.: Hard-aware point-to-set deep metric for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 196–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_12

    Chapter  Google Scholar 

  24. Zhao, Y., Jin, Z., Qi, G., Lu, H., Hua, X.: An adversarial approach to hard triplet generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 508–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_31

    Chapter  Google Scholar 

  25. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 72–81 (2019)

    Google Scholar 

  26. Zuo, X., Wei, X., Yang, B.: Trust-distrust aware recommendation by integrating metric learning with matrix factorization. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM 2018. LNCS (LNAI), vol. 11062, pp. 361–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99247-1_32

    Chapter  Google Scholar 

Download references

Acknowledgments

Supported by National Key R&D Program of China (No. 2017YFB1402400), National Nature Science Foundation of China (No. 61762025), Guangxi Key Laboratory of Trusted Software (No. kx202006), Guangxi Key Laboratory of Optoelectroric Information Processing (No. GD18202), and Natural Science Foundation of Guangxi Province, China (No. 2019GXNSFDA185007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Feng, Y., Zhou, M., Qiang, B. (2020). Relationship-Aware Hard Negative Generation in Deep Metric Learning. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12275. Springer, Cham. https://doi.org/10.1007/978-3-030-55393-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55393-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55392-0

  • Online ISBN: 978-3-030-55393-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics