Abstract
Data relationships and the impact of synthetic loss have not been concerned by previous sample generation methods, which lead to bias in model training. To address above problem, in this paper, we propose a relationship-aware hard negative generation (RHNG) method. First, we build a global minimum spanning tree for all categories to measure the data distribution, which is used to constrain hard sample generation. Second, we construct a dynamic weight parameter which reflects the convergence of the model to guide the synthetic loss to train the model. Experimental results show that the proposed method outperforms the state-of-the-art methods in terms of retrieval and clustering tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28(8), 4032–4044 (2019)
Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2789 (2018)
Ge, W., Huang, W., Dong, D., Scott, M.R.: Deep metric learning with hierarchical triplet loss. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 272–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_17
Grabner, A., Roth, P.M., Lepetit, V.: 3D pose estimation and 3D model retrieval for objects in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3022–3031 (2018)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)
Huang, C., Loy, C.C., Tang, X.: Local similarity-aware deep feature embedding. In: Advances in Neural Information Processing Systems, pp. 1262–1270 (2016)
Hunter, J.S.: The exponentially weighted moving average. J. Qual. Technol. 18(4), 203–210 (1986)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3DRR 2013), Sydney, Australia (2013)
Liu, Z., Wang, D., Lu, H.: Stepwise metric promotion for unsupervised video person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2429–2438 (2017)
Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857–1865 (2016)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)
Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular loss. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2593–2601 (2017)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(Feb), 207–244 (2009)
Xu, X., Yang, Y., Deng, C., Zheng, F.: Deep asymmetric metric learning via rich relationship mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4076–4085 (2019)
Yu, H.X., Wu, A., Zheng, W.S.: Cross-view asymmetric metric learning for unsupervised person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 994–1002 (2017)
Yu, J., Gao, M., Song, Y., Zhao, Z., Rong, W., Xiong, Q.: Connecting factorization and distance metric learning for social recommendations. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp. 389–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3_33
Yu, R., Dou, Z., Bai, S., Zhang, Z., Xu, Y., Bai, X.: Hard-aware point-to-set deep metric for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 196–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_12
Zhao, Y., Jin, Z., Qi, G., Lu, H., Hua, X.: An adversarial approach to hard triplet generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 508–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_31
Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 72–81 (2019)
Zuo, X., Wei, X., Yang, B.: Trust-distrust aware recommendation by integrating metric learning with matrix factorization. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM 2018. LNCS (LNAI), vol. 11062, pp. 361–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99247-1_32
Acknowledgments
Supported by National Key R&D Program of China (No. 2017YFB1402400), National Nature Science Foundation of China (No. 61762025), Guangxi Key Laboratory of Trusted Software (No. kx202006), Guangxi Key Laboratory of Optoelectroric Information Processing (No. GD18202), and Natural Science Foundation of Guangxi Province, China (No. 2019GXNSFDA185007).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, J., Feng, Y., Zhou, M., Qiang, B. (2020). Relationship-Aware Hard Negative Generation in Deep Metric Learning. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12275. Springer, Cham. https://doi.org/10.1007/978-3-030-55393-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-55393-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55392-0
Online ISBN: 978-3-030-55393-7
eBook Packages: Computer ScienceComputer Science (R0)