Skip to main content

Construction and Control Aerial Manipulator Robot

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

This article presents the construction of an aerial manipulator robot composed of one or two robotic arms on an unmanned aerial vehicle, in order to execute control tasks in an autonomous or tele-operated manner. This aerial manipulator robot can work with one or two arms depending on the application requirements. The arms have been designed to serve several purposes: object manipulation and protect the actuating servos against direct impacts and overloads. Finally, a trajectory tracking algorithm is implemented and the simulation results are presented and discussed, which validate the controller and the proposed modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia, E., Jimenez, M.A., De Santos, P.G., Armada, M.: The evolution of robotics research. IEEE Robot. Autom. Mag. 14, 1 (2007)

    Google Scholar 

  2. International Federation of Robotics. Service robots: Provisional definition of service robots. http://www.ifr.org/service-robots/

  3. Moradi, H., et al.: Service robotics (the rise and bloom of service robots) [tc spotlight]. IEEE Robot. Autom. Mag. 20(3), 22–24 (2013)

    Google Scholar 

  4. Lee, K., Lee, J., Woo, B., Lee, J., Lee, Y., Ra, S.: Modeling and control of a articulated robot arm with embedded joint actuators. In: 2018 International Conference on Information and Communication Technology Robotics (ICT-ROBOT), Busan, pp. 1–4, (2018)

    Google Scholar 

  5. Thai, H.N., Phan, A.T., Nguyen, C.K., Ngo, Q.U., Dinh, P.T., Vo, Q.T.: Trajectory tracking control design for dual-arm robots using dynamic surface controller. In: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP) (2019). https://doi.org/10.1109/ica-symp.2019.8646243

  6. Ruan, L., et al.: Energy-efficient multi-UAV coverage deployment in UAV networks: a game-theoretic framework. China Commun. 15(10), 194–209 (2018)

    Article  Google Scholar 

  7. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81(4), 281–330 (2015)

    Article  Google Scholar 

  8. Ramon Soria, P., Arrue, B., Ollero, A.: Detection, location and grasping objects using a stereo sensor on UAV in outdoor environments. Sensors 17(1), 103 (2017)

    Article  Google Scholar 

  9. Suarez, A., Heredia, G., Ollero, A.: Lightweight compliant arm with compliant finger for aerial manipulation and grasping. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  10. Bartelds, T., Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: Toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett. 1(1), 477–483 (2016)

    Article  Google Scholar 

  11. Tognon, M., Franchi, A.: Dynamics, control, and estimation for aerial robots tethered by cables or bars. IEEE Trans. Rob. 33(4), 834–845 (2017)

    Article  Google Scholar 

  12. Suarez, A., Heredia, G., Ollero, A.: Lightweight compliant arm with compliant finger for aerial manipulation and grasping. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

    Google Scholar 

  13. Suárez, A., Sanchez-Cuevas, P., Fernandez, M., Perez, M., Heredia, G., Ollero, A.: Lightweight and compliant long reach aerial manipulator for inspection operations. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6746–6752. IEEE, October 2018

    Google Scholar 

  14. Marquez, F., Maza, I., Ollero, A.: Comparacion de planificadores de caminos basados en muestro para un robot aereo equipado con brazo manipulador. Comité Español de Automática de la CEA-IFAC (2015)

    Google Scholar 

  15. Cano, R., Pérez, C., Pruaño, F., Ollero, A., Heredia, G.: Diseño Mecánico de un Manipulador Aéreo Ligero de 6 GDL para la Construcción de Estructuras de Barras. ARCAS (ICT-2011– 287617) del séptimo Programa Marco de la Comisión Europea y el proyecto CLEAR (DPI2011-28937-C02-01) (2013)

    Google Scholar 

  16. Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 4990–4995 (2013)

    Google Scholar 

  17. https://www.dji.com/matrice600-pro

  18. Ortiz, J., Erazo, A., Carvajal, C., Pérez, J., Proaño, L., Silva M,F., Andaluz, V.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Computational Kinematics, pp. 87–95 (2017)

    Google Scholar 

  19. Leica, P., Balseca, J., Cabascango, D., Chávez, D., Andaluz, G., Andaluz, V.H.: Controller based on null space and sliding mode (NSB-SMC) for bidirectional teleoperation of mobile robots formation in an environment with obstacles. In: 2019 IEEE Fourth Ecuador Technical Chapters Meeting (ETCM), Guayaquil, pp. 16 (2019)

    Google Scholar 

  20. Varela-Aldás, J., Andaluz, V.H., Chicaiza, F.A.: Modelling and control of a mobile manipulator for trajectory tracking. In: 2018 International Conference on Information Systems and Computer Science (INCISCOS), Quito (2018)

    Google Scholar 

  21. Andaluz, V., Rampinelli, V.T.L., Roberti, F., Carelli, R.: Coordinated cooperative control of mobile manipulators. In: 2011 IEEE International Conference on Industrial Technology, Auburn, AL, pp. 300–305 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Corporación Ecuatoriana para el Desarrollo de la Investigación and Academia CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XIII-2019-08; Sistema colaborativo de robots Aéreos para Manipular Cargas con Optimo Consumo de Recursos; also to Universidad de las Fuerzas Armadas ESPE, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, Universidad tecnológica Indoamérica, Universidad internacional del Ecuador, Universidad central de Venezuela, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steeven J. Loor , Alan R. Bejarano , Franklin M. Silva or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loor, S.J., Bejarano, A.R., Silva, F.M., Andaluz, V.H. (2020). Construction and Control Aerial Manipulator Robot. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics