Skip to main content

Deep Learning for QoS-Aware Resource Allocation in Cognitive Radio Networks

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12144))

  • 1905 Accesses

Abstract

This paper focuses on the application of deep learning (DL) to obtain solutions for radio resource allocation problems in cognitive radio networks (CRNs). In the proposed approach, a deep neural network (DNN) as a DL model is proposed which can decide the transmit power without any help from other nodes. The resource allocation policies have been shown in the context of effective capacity theory. The numerical results demonstrate that the proposed model outperforms the scheme in terms of radio resource utilization efficiency. Simulation results also support the effectiveness on the delay guarantee performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayodele, T.O.: Introduction to machine learning. In: Zhang, Y. (ed.) New Advances in Machine Learning. InTech (2010)

    Google Scholar 

  2. Karunaratne, S., Gacanin, H.: An Overview of Machine Learning Approaches in Wireless Mesh Network (2018). https://arxiv.org/ftp/arxiv/papers/1806/1806.10523.pdf

  3. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(1), 98–105 (2016)

    Google Scholar 

  4. Zilong, H., Tang, J., Wang, Z., Zhang, K., Sun, Q.: Deep learning for image-based cancer detection and diagnosis - a survey. Pattern Recogn. 83(11), 123–149 (2018)

    Google Scholar 

  5. Cho, K., Van Merriënboer, B., Gulcehre, C.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). http://arxiv.org/abs/1406.1078

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  7. Weng, C., Yu, D., Watanabe, S., Juang, B.-H.F.: Recurrent deep neural networks for robust speech recognition. In: Proceedings of the ICASSP, pp. 5532–5536, Florence, Italy, May 2014

    Google Scholar 

  8. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015). https://arxiv.org/abs/1404.7828

  9. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  10. Haykin, S., Radio, C.: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  11. Chen, Y., Feng, Z., Chen, X.: Cross-layer resource allocation with heterogeneous QoS requirements in cognitive radio networks. In: IEEE Wireless Communications and Networking Conference, pp. 96–101 (2011)

    Google Scholar 

  12. Fu, Y., Ma, L., Xu, Y.: A novel component carrier configuration and switching scheme for real-time traffic in a cognitive-radio-based spectrum aggregation system. Sensors 9, 23706–23726 (2015)

    Article  Google Scholar 

  13. Doost, R., Naderi, M.Y., Chowdhury, K.R.: Spectrum allocation and QoS provisioning framework for cognitive radio with heterogeneous service classes. IEEE Trans. Wirel. Commun. 13(7), 3938–3950 (2014)

    Article  Google Scholar 

  14. Mishra, V., Tong, L., Chan, S., Mathew, J.: TQCR-media access control: two-level quality of service provisioning media access control protocol for cognitive radio network. IET Networks 2, 74–81 (2014)

    Article  Google Scholar 

  15. Zhu, L., Xu, Y., Chen, J., Li, Z.: The design of scheduling algorithm for cognitive radio networks based on genetic algorithm. In: IEEE International Conference on Computational Intelligence Communication Technology (CICT), pp. 459–464 (2015)

    Google Scholar 

  16. Xu, Z., Wang, Y., Wang, J., Cursoy, M.C.: A deep reinforcement learning based framework for power efficient resource allocation in cloud RANs. In: IEEE International Conference on Communication (ICC), pp. 1–6 (2017)

    Google Scholar 

  17. Li, X., Fang, J., Cheng, W., Duan, H., Chen, Z., Li, H.: Intelligent power control for spectrum sharing in cognitive radios: a deep reinforcement learning approach. IEEE Access 6, 25463–25473 (2018)

    Article  Google Scholar 

  18. Ahmed, K.I., Tabassum, H., Hossain, E.: Deep Learning for Radio Response Allocation in Multi-Cell Networks (2018). https://arxiv.org/pdf/1808.00667.pdf

  19. Chang, C.-S.: Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Trans. Autom. Control 39(5), 913–931 (1994)

    Article  MathSciNet  Google Scholar 

  20. Wu, D., Negi, R.: Effective capacity: a wireless link model for support of quality of service. IEEE Trans. Wirel. Commun. 12(4), 630–643 (2003)

    Google Scholar 

  21. Schölkopf, B., Smola, A.: Learning with Kernels - Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, Massachussets. London, England: The MIT Press Series (2001)

    Google Scholar 

  22. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural Inf. Process. 26 315–323 (2013). http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf

  23. IEEE 802.22, Cognitive Wireless Regional Area Network (2011). https://standards.ieee.org/about/get/802/802.22.html

  24. Kang, X., Liang, Y.C., Nallanathan, A., Garg, H.K., Zhang, R.: Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity. IEEE Trans. Wirel. Commun. 8(2), 940–950 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Martyna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martyna, J. (2020). Deep Learning for QoS-Aware Resource Allocation in Cognitive Radio Networks. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics