Skip to main content

High Order Whitney Forms on Simplices and the Question of Potentials

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1716 Accesses

Abstract

In the frame of high order finite element approximations of PDEs, we are interested in an explicit and efficient way for constructing finite element functions with assigned gradient, curl or divergence in domains with general topology. Three ingredients, that bear the name of their scientific fathers, are involved: the de Rham’s diagram and theorem, Hodge’s decomposition for vectors, Whitney’s differential forms. Some key images are presented in order to illustrate the mathematical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Abraham, J. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences 75, Springer (1988).

    Google Scholar 

  2. A. Alonso Rodríguez, J. Cama\(\tilde {\mathrm {n}}\)o, E. De Los Santos, F. Rapetti, A graph approach for the construction of high order divergence-free Raviart-Thomas finite elements, Calcolo 55:42, 2018.

    Google Scholar 

  3. A. Alonso Rodríguez, F. Rapetti, Small trees for high order Whitney elements, in “Spectral and High Order Methods for PDEs”, S.J. Sherwin et al. eds., Icosahom 2018 procs., LNCSE Vol. 134, Springer-Verlag, 2020.

    Google Scholar 

  4. A. Alonso Rodríguez, A. Valli, Finite element potentials, Appl. Numer. Math., 95 (2015) 2–14.

    Article  MathSciNet  Google Scholar 

  5. C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., 21 (1998) 823–864.

    Article  MathSciNet  Google Scholar 

  6. D.N. Arnold, R.S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006) 1–155.

    Article  MathSciNet  Google Scholar 

  7. A. Bossavit, Magnetostatic problems in multiply connected regions: some properties of the curl operator, Phys. Sci., Meas. and Instr., Management and Education - Reviews, IEE Procs. A, 135 (1988) 179–187.

    Google Scholar 

  8. A. Bossavit, Computational electromagnetism, Academic Press, Inc., San Diego, CA, 1998.

    MATH  Google Scholar 

  9. J. Cantarella, D. De Turck, H. Gluck, Vector calculus and the topology of domains in 3-space, Amer. Math. Monthly 109 (2002) 409–442.

    Article  MathSciNet  Google Scholar 

  10. J.R. Munkres, Elements of algebraic topology, Perseus Books, Cambridge, MA, 1984.

    MATH  Google Scholar 

  11. H. Helmohltz, Über integrale der hydrodynamischen gleichungen welch den wirbelbewegungen, J. Reine Agew. Math. 55 (1858) 25–55.

    Google Scholar 

  12. R. Hiptmair, J. Ostrowski, Generators offor Triangulated Surfaces: Construction and Classification, SIAM J. Comput. 31/5 (2002) 1405–1523.

    Google Scholar 

  13. W.V.D. Hodge, The theory and applications of harmonic integrals, Cambridge Univ. Press (1941).

    MATH  Google Scholar 

  14. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach (1963).

    Google Scholar 

  15. F. Rapetti, F. Dubois, A. Bossavit, Discrete vector potentials for non-simply connected three-dimensional domains, SIAM J. on Numer. Anal. 41/4 (2003) 1505–1527.

    Google Scholar 

  16. F. Rapetti, A. Bossavit, Whitney forms of higher degree, SIAM J. Numer. Anal. 47 (2009) 2369–2386.

    Article  MathSciNet  Google Scholar 

  17. J. Stillwell, Classical topology and Combinatorial Group Theory, Graduate Texts in Maths. 72, Springer (1993).

    Google Scholar 

  18. K. Thulasiraman, M.N.S. Swamy, Graphs: theory and algorithms, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York (1992).

    Book  Google Scholar 

  19. F.W.Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Maths. 94, Springer (1983).

    Google Scholar 

  20. A. Weil, Sur les théorèmes de de Rham, in Commentarii Mathematici Helvetici 26 (1952) 119–145.

    Google Scholar 

  21. H. Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957.

    Book  Google Scholar 

Download references

Acknowledgement

This work was partially supported by PRIN’s project NA-FROM-PDEs 201752HKH8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rapetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapetti, F., Rodríguez, A.A. (2021). High Order Whitney Forms on Simplices and the Question of Potentials. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_1

Download citation

Publish with us

Policies and ethics