Abstract
For the second–order wave equation, we compare the Newmark Galerkin method with a stabilised space–time finite element method for tensor–product space–time discretisations with piecewise multilinear, continuous ansatz and test functions leading to an unconditionally stable Galerkin–Petrov scheme, which satisfies a space–time error estimate. We show that both methods require to solve a linear system with the same system matrix. In particular, the stabilised space–time finite element method can be solved sequentially in time as the Newmark Galerkin method. However, the treatment of the right–hand side of the wave equation is different, where the Newmark Galerkin method requires more regularity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ladyzhenskaya, O.A.: The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49. Springer-Verlag, New York (1985)
Raviart, P.A., Thomas, J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. Paris etc.: Masson. 224 p. (1983)
Steinbach, O., Zank, M.: A stabilized space–time finite element method for the wave equation. In: Advanced Finite Element Methods with Applications. Selected papers from the 30th Chemnitz FEM Symposium 2017, (T. Apel, U. Langer, A. Meyer, O. Steinbach eds.), Lecture Notes in Computational Science and Engineering, pp. 315–342. Springer (2019)
Steinbach, O., Zank, M.: Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52, 154–194 (2020)
Zank, M.: Inf–sup stable space–time methods for time–dependent partial differential equations. volume 36 of Monographic Series TU Graz: Computation in Engineering and Science (2020)
Zlotnik, A.A.: Convergence rate estimates of finite-element methods for second-order hyperbolic equations. In: Numerical methods and applications, pp. 155–220. CRC, Boca Raton, FL (1994)
Acknowledgements
The author greatly appreciates the discussion with I. Perugia, J. Schöberl and P. Stocker.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zank, M. (2021). The Newmark Method and a Space–Time FEM for the Second–Order Wave Equation. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_122
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_122
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)