Abstract
In certain applications involving the solution of a Bayesian inverse problem, it may not be possible or desirable to evaluate the full posterior, e.g. due to the high computational cost of doing so. This problem motivates the use of approximate posteriors that arise from approximating the data misfit or forward model. We review some error bounds for random and deterministic approximate posteriors that arise when the approximate data misfits and approximate forward models are random.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dashti, M., Stuart, A. M.: The Bayesian Approach to Inverse Problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_7
Lie, H. C., Sullivan, T. J., Teckentrup, A. L.: Random Forward Models and Log-Likelihoods in Bayesian Inverse Problems. SIAM/ASA J. Uncertain. Quantif. (2018). https://doi.org/10.1137/18M1166523
Cockayne, J., Oates, C., Sullivan, T. J., Girolami, M.: Bayesian probabilistic numerical methods. SIAM Rev. (2019). https://doi.org/10.1137/17M1139357
Marzouk, Y., Xiu, D.: A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. (2009). https://doi.org/10.4208/cicp.2009.v6.p826
Birolleau, A., Poëtte, G., Lucor, D.: Adaptive Bayesian inference for discontinuous inverse problems, application to hyperbolic conservation laws. Commun. Comput. Phys. (2014). https://doi.org/10.4208/cicp.240113.071113a
Christen, J. A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Statist. (2005). https://doi.org/10.1198/106186005X76983
Dodwell, T. J., Ketelsen, C., Scheichl, R., Teckentrup, A. L.: Multilevel Markov Chain Monte Carlo. SIAM Rev. (2019). https://doi.org/10.1137/19M126966X
Wang, K., Bui-Thanh, T., Ghattas, O.: A randomised maximum a posteriori method for posterior sampling of high dimensional nonlinear Bayesian inverse problems. SIAM J. Sci. Comput. (2018). https://doi.org/10.1137/16M1060625
Stuart, A. M., Teckentrup, A. L.: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. (2010). https://doi.org/10.1090/mcom/3244
Le, E. B., Myers, A., Bui-Thanh, T., Nguyen, Q. P.: A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. Inverse Probl. (2017). https://doi.org/10.1088/1361-6420/aa6cbd
Aravkind, A., Friedlander, M. P., Herrmann, F. J., van Leeuwen, T.: Robust inversion, dimensionality reduction, and randomized sampling. Math. Program., Ser. B (2012). https://doi.org/10.1007/s10107-012-0571-6
Latz, J.: On the well-posedness of Bayesian inverse problems. SIAM/ASA J. Uncertain. Quantif. (2020). https://doi.org/10.1137/19M1247176
Sprungk, B.: On the local Lipschitz robustness of Bayesian inverse problems. Inverse Probl. (2020). https://doi.org/10.1088/1361-6420/ab6f43
Acknowledgements
The research of HCL has been partially funded by Deutsche Forschungsgemeinschaft (DFG)—SFB1294/1—318763901 and by Universität Potsdam. The work of TJS has been partially supported by the Freie Universität Berlin within the Excellence Initiative of the German Research Foundation (DFG). The authors thank an anonymous referee for their feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lie, H.C., Sullivan, T.J., Teckentrup, A. (2021). Error Bounds for Some Approximate Posterior Measures in Bayesian Inference. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)