Skip to main content

Error Bounds for Some Approximate Posterior Measures in Bayesian Inference

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 2015 Accesses

Abstract

In certain applications involving the solution of a Bayesian inverse problem, it may not be possible or desirable to evaluate the full posterior, e.g. due to the high computational cost of doing so. This problem motivates the use of approximate posteriors that arise from approximating the data misfit or forward model. We review some error bounds for random and deterministic approximate posteriors that arise when the approximate data misfits and approximate forward models are random.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dashti, M., Stuart, A. M.: The Bayesian Approach to Inverse Problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_7

  2. Lie, H. C., Sullivan, T. J., Teckentrup, A. L.: Random Forward Models and Log-Likelihoods in Bayesian Inverse Problems. SIAM/ASA J. Uncertain. Quantif. (2018). https://doi.org/10.1137/18M1166523

  3. Cockayne, J., Oates, C., Sullivan, T. J., Girolami, M.: Bayesian probabilistic numerical methods. SIAM Rev. (2019). https://doi.org/10.1137/17M1139357

  4. Marzouk, Y., Xiu, D.: A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. (2009). https://doi.org/10.4208/cicp.2009.v6.p826

  5. Birolleau, A., Poëtte, G., Lucor, D.: Adaptive Bayesian inference for discontinuous inverse problems, application to hyperbolic conservation laws. Commun. Comput. Phys. (2014). https://doi.org/10.4208/cicp.240113.071113a

  6. Christen, J. A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Statist. (2005). https://doi.org/10.1198/106186005X76983

  7. Dodwell, T. J., Ketelsen, C., Scheichl, R., Teckentrup, A. L.: Multilevel Markov Chain Monte Carlo. SIAM Rev. (2019). https://doi.org/10.1137/19M126966X

  8. Wang, K., Bui-Thanh, T., Ghattas, O.: A randomised maximum a posteriori method for posterior sampling of high dimensional nonlinear Bayesian inverse problems. SIAM J. Sci. Comput. (2018). https://doi.org/10.1137/16M1060625

  9. Stuart, A. M., Teckentrup, A. L.: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. (2010). https://doi.org/10.1090/mcom/3244

  10. Le, E. B., Myers, A., Bui-Thanh, T., Nguyen, Q. P.: A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. Inverse Probl. (2017). https://doi.org/10.1088/1361-6420/aa6cbd

  11. Aravkind, A., Friedlander, M. P., Herrmann, F. J., van Leeuwen, T.: Robust inversion, dimensionality reduction, and randomized sampling. Math. Program., Ser. B (2012). https://doi.org/10.1007/s10107-012-0571-6

  12. Latz, J.: On the well-posedness of Bayesian inverse problems. SIAM/ASA J. Uncertain. Quantif. (2020). https://doi.org/10.1137/19M1247176

  13. Sprungk, B.: On the local Lipschitz robustness of Bayesian inverse problems. Inverse Probl. (2020). https://doi.org/10.1088/1361-6420/ab6f43

Download references

Acknowledgements

The research of HCL has been partially funded by Deutsche Forschungsgemeinschaft (DFG)—SFB1294/1—318763901 and by Universität Potsdam. The work of TJS has been partially supported by the Freie Universität Berlin within the Excellence Initiative of the German Research Foundation (DFG). The authors thank an anonymous referee for their feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Cheng Lie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lie, H.C., Sullivan, T.J., Teckentrup, A. (2021). Error Bounds for Some Approximate Posterior Measures in Bayesian Inference. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_26

Download citation

Publish with us

Policies and ethics