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Error bounds for some approximate posterior
measures in Bayesian inference

Han Cheng Lie and T. J. Sullivan and Aretha Teckentrup

Abstract In certain applications involving the solution of a Bayesian inverse problem,

it may not be possible or desirable to evaluate the full posterior, e.g. due to the

high computational cost of doing so. This problem motivates the use of approximate

posteriors that arise from approximating the data misfit or forward model. We review

some error bounds for random and deterministic approximate posteriors that arise

when the approximate data misfits and approximate forward models are random.

1 Introduction

An inverse problem consists of recovering an unknown parameter u that belongs to

a possibly infinite-dimensional space U from noisy data y of the form

y = G(u) + η ∈ Y, (1)

where Y is the ‘data space’, G : U → Y is a known ‘forward operator’, and η is a

random variable. In many problems of interest, the parameter space U is a subset of

an infinite-dimensional Banach space, the data space Y is often taken to be Rd for

some possibly large d ∈ N, and η is assumed to be Gaussian.
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One of the main difficulties with inverse problems is that they often do not satisfy

Hadamard’s definition of well-posedness. To circumvent this difficulty, one may use

the Bayesian approach, in which one incorporates information about the unknown

u from existing data and from new data in the ‘prior’ probability measure µ0 on U

and in the ‘data misfit’ Φ : Y ×U → R respectively. If η ∈ Rd in (1) is distributed

according to the normal distribution N(0, Γ) with positive definite Γ ∈ Rd×d, then

Φ(y, u) :=
1

2
‖Γ−1/2 (y − G(u)) ‖2. (2)

By Bayes’ formula, the posterior µy is a probability measure on U that is absolutely

continuous with respect to the prior µ0, and has Radon–Nikodym derivative

dµy

dµ0

(u) :=
exp(−Φ(y, u))

Z(y)
, Z(y) :=

∫

U

exp(−Φ(y, u′))dµ0(u
′). (3)

The posterior µy describes the distribution of the unknown u, conditioned upon

the data y. By imposing conditions jointly upon Φ and µ0, one can show that the

Bayesian solution µy to the inverse problem depends continuously on the data, and

one can prove the well-posedness of the Bayesian inverse problem; see [1].

For simplicity, we shall assume that the data y is given and fixed, and omit the

dependence of the posterior, data misfit, and normalisation constant Z on y.

One challenge with solving Bayesian inverse problems in practice is that it is often

not possible or desirable to evaluate the data misfit Φ(u) exactly. It then becomes

necessary to find approximationsΦN of the true data misfit Φ that can be computed

more efficiently, such that for sufficiently large values of N , inference using the

approximate misfit ΦN effectively approximates inference using the true misfit Φ.

Thus, one needs to identify conditions on ΦN such that two criteria are fulfilled:

first, an approximate posterior measure µN defined by

dµN

dµ0

(u) :=
exp(−ΦN (u))

ZN

, ZN :=

∫

U

exp(−ΦN (u
′))dµ0(u

′) (4)

exists and is well-defined; and second, the approximate posterior µN provides an in-

creasingly good approximation of the true posterior µ as the approximation parameter

N increases. In this paper, we review results from [2] that guarantee well-definedness

of µN and establish error bounds for µN in terms of error bounds for ΦN .

In recent years, randomised numerical methods have been developed in order to

overcome limitations of their deterministic counterparts. The field of probabilistic

numerical methods [3] injects randomness into existing deterministic solvers for

differential equations in order to model the uncertainty due to unresolved subgrid-

scale dynamics. Random approximations of the forward model have been applied

for forward uncertainty propagation in a range of applications; see e.g. [4, 5].

Randomisation has been shown to yield gains in computational efficiency. Re-

sults from [6, Section 5.7] showed a reduction by a factor of almost 25 in the CPU

time needed for generating an independent sample with the Metropolis-Hastings

algorithm, while in [7], a multilevel Markov Chain Monte Carlo method uses ran-
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domisation in the form of control variates for variance reduction. Stochastic pro-

gramming ideas were used for more efficient posterior sampling in [8]. The results

we describe provide theoretical support for the use of randomisation in Bayesian

inference, and extend the pioneering results from [9], which concerned Gaussian

process approximations of data misfits and forward models.

To motivate the use of random approximate misfits, consider the following exam-

ple: Let X be any Rd-valued random variable such that E[X] = 0 and E[XX⊤] is the

d × d identity matrix, and let {Xi}i∈N be i.i.d. copies of X . Given (2),

Φ(u) =
1

2

(

Γ
−1/2(y − G(u)

)

E
[

XX⊤
]

(

Γ
−1/2(y − G(u)

)

=

1

2
E

[�

�

�X
⊤
(

Γ
−1/2(y − G(u))

)�

�

�

]

≈
1

2N

N
∑

j=1

�

�

�X
⊤
j

(

Γ
−1/2(y − G(u))

)�

�

� =: ΦN (u).

In [10], the misfit ΦN above was used to obtain computational cost savings when

solving inverse problems associated to PDE boundary value problems. The results

we present below can be specialised to the case of X with bounded support [2,

Proposition 4.1]. For example, we can use the ℓ-sparse distribution for some 0 ≤

ℓ < 1; for ℓ = 0, this is the Rademacher distribution. Similar ideas have been applied

for full waveform inversion in seismic tomography [11], for example.

2 Error bounds for approximate posteriors

In what follows, we shall assume that the parameter space U admits a Borel σ-

algebra, and we shall denote by M1(U) the set of Borel probability measures on U.

Recall that the Hellinger metric dH : M1(U) ×M1(U) → [0, 1] is defined by

dH(µ, ν)
2 :=

1

2

∫

U

�

�

�

�

�

√

dµ

dπ
(u′) −

√

dν

dπ
(u′)

�

�

�

�

�

2

dπ(u′),

where π ∈ M1(U) is any measure such that µ and ν are both absolutely continuous

with respect to π. It is known that dH does not depend on the choice of π.

2.1 Error bounds for random approximate posteriors

We first present error bounds on random approximate posteriors µN associated to

random misfits ΦN , where N ∈ N. That is, given a probability space (Ω,F , P),

we shall view a random misfit as a measurable function ΦN : Ω × U → R.

Furthermore, we shall assume that the randomness associated to the approximate

misfit ΦN is independent of the randomness associated to the unknown parameter
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u. In what follows, νN denotes a probability measure onΩ with the property that the

distribution of the random function ΦN is given by νN ⊗ µ0.

Given (3) and (4), a natural question is to establish an appropriate bound on the

Hellinger distance between the true posterior µ and the approximate posterior µN in

terms of some norm of the error between the true misfitΦ and the approximate misfit

ΦN . We emphasise that the approximate posterior µN in (4) is random in the sense

that it depends on ω, since the approximate misfit ΦN depends on ω. Therefore, the

Hellinger distance dH(µ, µN ) will depend on ω as well. To describe such a bound,

we shall take the expectation of the Hellinger distance with respect to νN , and let





EνN [ f (ΦN )]






L
q
µ0

(U)
:=

(∫

U

�

�

�

�

∫

Ω

f (ΦN (ω, u)) dνN (ω)

�

�

�

�

q

dµ0(u)

)1/q

for any Borel-measurable function f : R→ R and q ∈ [1,∞). We define the quantity

‖EνN [ f (ΦN )]‖L∞
µ0

(U) analogously. With these preparations, we present the following

theorem, which was given in [2, Theorem 3.2].

Theorem 1 (Error bound for random approximate posterior) Let (q1, q
′
1
) and

(q2, q
′
2
) be pairs of Hölder conjugate exponents, and let D1, D2 be positive scalars

that depend only on q1 and q2. Suppose the following conditions hold:
















EνN

[

(

exp
(

− 1
2
Φ

)

+ exp
(

− 1
2
ΦN

))2q1

]1/q1
















L
q2
µ0

(U)

≤ D1 (5)













EνN

[ (

ZN max{Z−3, Z−3
N } (exp (−Φ) + exp (−ΦN ))

2
)q1

]1/q1













L
q2
µ0

(U)

≤ D2. (6)

Then

EνN

[

dH (µ, µN )
2
]1/2

≤ (D1 + D2)













EνN

[

|Φ −ΦN |2q
′
1

]1/2q′
1













L
2q′

2
µ0

(U)

.

Theorem 1 provides a bound on the mean square Hellinger distance between the true

posterior µ and the random approximate posterior µN , in terms of an appropriate

norm of the error Φ − ΦN . The bound (5) implies that the negative tails of both

Φ and ΦN must decay exponentially quickly with respect to the νN ⊗ µ0-measure,

and is satisfied, for example, when both Φ and ΦN are bounded from below. Since

ZN max{Z−3, Z−3
N
} = max{ZN Z−3, Z−2

N
}, it follows that the constraint imposed on

the misfit ΦN by (6) is that exp(−ΦN ) should be neither too concentrated nor too

broad. Together, conditions (5) and (6) ensure that the random approximate posterior

µN exists, is well-defined, and satisfies the desired bound on the mean square

Hellinger distance with respect to the true posterior µ.

An alternative way to generate an approximate posterior measure given a random

approximate misfit is to compute a marginal approximate posterior µM
N

, defined by
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dµM
N

dµ0

(u) :=
EνN [exp(−φN (u))]

EνN [ZN ]
. (7)

Note that, since we have taken expectations with respect to νN , the marginal ap-

proximate posterior does not depend on ω, and is in this sense deterministic. The

following theorem was given in [2, Theorem 3.1].

Theorem 2 (Error bound for marginal approximate posterior) Let (p1, p
′
1
),

(p2, p
′
2
), and (p3, p

′
3
) be Hölder conjugate exponent pairs, and suppose there ex-

ist finite, positive scalars C1, C2, and C3 that depend only on p1, p2, and p3, such

that the following conditions hold:

min

{








EνN [exp (−ΦN )]
−1









L
p1
µ0

(U)
, ‖exp(Φ)‖

L
p1
µ0

(U)

}

≤ C1 (8)








EνN [(exp(−Φ) + exp(−ΦN ))
p2]

1/p2










L
2p′

1
p3

µ0
(U)

≤ C2 (9)

C−1
3 ≤ EνN [ZN ] ≤ C3. (10)

Then there exists C > 0 that does not depend on N such that

dH(µ, µ
M
N ) ≤ C













EνN

[

|Φ − ΦN |
p′

2

]1/p′
2













L
2p′

1
p′

3
µ0

(U)

.

The bounds in (10) ensure that the denominator in (7) is strictly positive and finite.

Thus, these bounds play a fundamental role in ensuring that the marginal approximate

posterior exists and is well-defined. The bound in (9) reiterates the bound (5), modulo

the 1
2

factor, and thus serves a similar purpose as (5). The bound in (8) serves a similar

purpose as (6). However, the minimum operator implies that it is not necessary for

both Φ and ΦN to be well-behaved.

The following result is a corollary of Theorem 1, Theorem 2, and [2, Lemma 3.5].

The main idea is to specify sufficient conditions for the hypotheses of both Theorem

1 and Theorem 2 to hold.

Corollary 1 (Joint conditions for error bounds on both approximate posteriors)

Suppose the following conditions are satisfied:

(i) There exists C0 ∈ R that does not depend on N such that Φ ≥ −C0 on U and, for

all N ∈ N, νN (ΦN ≥ −C0) = 1,

(ii) For any 0 < C3 < ∞ such that C−1
3
< Z < C3, there exists N∗(C3) ∈ N such that

N ≥ N∗ implies





EνN [|Φ −ΦN |]






L1
µ0

(U)
≤

1

2
exp(−C0)min

{

Z − C−1
3 ,C3 − Z

}

,

and

(iii) there exists some 2 < ρ∗ < +∞ such that ‖EνN [exp(ρ∗ΦN )]‖L1
µ0

(U) is finite.

Then for each N ≥ N∗(C3),
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dH

(

µ, µM
N

)

≤ C




EνN [|Φ −ΦN |]






L
2ρ∗/(ρ∗−1)
µ0

(U)
(11)

and

EνN

[

dH(µ, µN )
2
]1/2

≤ D













EνN

[

|Φ − ΦN |
2ρ∗/(ρ∗−2)

] (ρ∗−2)/(2ρ∗)












L1
µ0

(U)

, (12)

where C, D > 0 depend on ‖EνN [exp(ρ∗ΦN )]‖
1/ρ∗

L1
µ0

(U)
. If in addition to conditions

(i)–(iii) it holds that

sup
N≥N∗(C3)





EνN [exp(ρ∗ΦN )]






L1
µ0

(U)
< ∞,

then the constants C and D in (11) and (12) do not depend on N .

Condition (i) amounts to a common uniform lower bound on all the misfits, both

the true misfit and the collection of random approximate misfits, and thus plays

a role in ensuring that (5) and (9) are satisfied. Condition (ii) makes precise the

assumption that ΦN approximates Φ in the L1
νN ⊗µ0

topology, which is a necessary

condition for ensuring that the right-hand sides of the conclusions of Theorem 1 and

Theorem 2 are finite. Condition (iii) describes an exponential integrability condition

on the random approximate misfits and ensures that (6) and (8) are satisfied. Thus

the additional condition amounts to a uniform exponential integrability condition

over all sufficiently large values of N .

Remark 1 Neither Theorem 1 nor Theorem 2 require boundedness from below of

either Φ or the ΦN . However, the negative tails of both Φ and ΦN must decay expo-

nentially quickly at a sufficiently high rate, as specified by (9) and (5) respectively.

2.2 Error bounds for random forward models

Next, we consider approximate posterior measures that arise as a result of approxi-

mating the forward model G in (1). For simplicity, we shall consider only the case

when the data misfit Φ and forward model G are related via the quadratic potential

(2). In particular, this means that if GN : U → Y is an approximation of the true

forward model G, then the resulting approximate data misfit is given by

ΦN (u) :=
1

2
‖Γ−1 (y − GN (u)) ‖

2.

The following theorem is a nonasymptotic reformulation of [2, Theorem 3.9 (b)].

Theorem 3 (Error bounds for approximate posteriors) Suppose there exists 2 <

ρ∗ < ∞ such that supN EνN [exp(ρ∗ΦN )] ∈ L1
µ0
(U) is finite. If there exists an N∗ ∈ N

such that, for all N ≥ N∗,
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EνN

[

‖G − GN ‖4ρ∗/(ρ∗−2)
] (ρ∗−2)/(2ρ∗)













L
2ρ∗/(ρ∗−1)
µ0

(U)

≤ 1,

then

dH

(

µ, µM
N

)

≤ C








EνN

[

‖GN − G‖2
]










1/2

L
2ρ∗/(ρ∗−1)
µ0

(U)

and

EνN

[

dH(µ, µN ))
2
]1/2

≤ D













EνN

[

‖GN − G‖4ρ∗/(ρ∗−2)
] (ρ∗−2)/(2ρ∗)













1/2

L2
µ0

(U)

for C, D > 0 that do not depend on N .

The theorem can be rewritten so that, instead of imposing a uniform exponential

integrability condition on the approximate quadratic potentials ΦN , one instead

imposes an exponential integrability condition on the true data misfit Φ; see [2,

Theorem 3.9 (a)]. An additional hypothesis in this case is that the expectations of the

approximate data misfit functions are νN -almost surely bounded, in the sense that

νN (ΦN | Eµ0
[ΦN ] ≤ C4) = 1 for some C4 ∈ R that does not depend on N .

3 Conclusions and directions for future work

This paper has reviewed the main error bounds of [2] concerning deterministic and

random approximate posteriors that arise when performing Bayesian inference with

random approximate data misfits or random forward models. The error bounds on

the approximate posterior measures are given with respect to the Hellinger metric

on the space of Borel probability measures M1(U). Given a fixed prior measure µ0,

these error bounds describe – with specific exponents of integrability and problem-

dependent constants – the local or global Lipschitz continuity of the map that takes

a data misfit as input and produces the corresponding posterior measure as output.

Aside from the regularity assumptions made on the randomapproximations, the error

bounds shown above make no structural assumptions on the approximations used.

For example, we do not assume that the random approximations involve Gaussian

random variables, or random variables with bounded support.

Recent work has highlighted the importance of considering other metrics on

M1(U), and also of proving well-posedness of the solution of a Bayesian inverse

problem by establishing continuous (instead of Lipschitz continuous) dependence on

either the data, prior, or data misfit. The well-posedness of Bayesian inverse problems

in the sense of continuous dependence with respect to the data of the posterior for

given prior and data misfit was established in [12]. Local Lipschitz continuity with

respect to deterministic perturbations in the prior or data misfit was shown in [13].

In both [12, 13], continuity is with respect to the topologies induced by the total

variation metric, by Wasserstein p-metrics, or by the Kullback-Leibler divergence.
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A key assumption made in [13] when establishing local Lipschitz continuity for a

fixed prior µ0 with respect to perturbations in the data misfit is that the deterministic

perturbed data misfit is µ0-almost surely bounded from below. As highlighted in

Remark 1, the analysis of [2] does not require that either the true data misfit or the

random approximate log-likelihood are µ0-almost surely bounded from below. For

future work, we aim to establish similar continuity results with respect to different

metrics, as demonstrated in [12, 13], but at the same level of generality of [2].
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