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1 Introduction

We consider the solution of large, parallel distributed stationary and dynamic dis-
cretized elasticity problemswith amoderate Poisson ratio; i.e., we do not consider the
nearly incompressible case. As the solver, we use the Generalized Minimal Residual
(GMRES) method preconditioned by two-level overlapping Schwarz precondition-
ers with Generalized Dryja–Smith–Widlund (GDSW) [2, 3] and Reduced dimension
GDSW (RGDSW) [5, 12] coarse spaces. Even though these preconditioners can be
constructed from the fully assembled system matrix, a minimum of geometric in-
formation is also needed. In particular, the domain decomposition interface and the
null space are used for their construction. Here, we focus on the construction of fully
algebraic GDSW type coarse spaces if this information is not available. In particular,
we consider the case when the system matrix is uniquely distributed, such that the
interface cannot be identified.

Therefore, we will describe a method to approximate the nonoverlapping subdo-
mains, resulting in an approximate interface; cf. [10]. Our parallel implementation
is based on the FROSch framework [9], which is part of the ShyLU package in
Trilinos [13]; see [11, 10] for more details on the implementation. To discuss the
performance of the fully algebraic approach, we will compare it to the classical
GDSW type coarse spaces using all necessary information.
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2 Model Problems

The equilibrium equation for an elastic body covering the domain Ω = [0,1]3 under
the action of a body force f in the time interval [0,T] is

∂ttu − divσ = f in Ω × [0,T], (1)

with the symmetric Cauchy stress tensor σ and the displacement u. We consider a
Saint Venant-Kirchhoff material, a hyperelastic material with the linear material law

σ(E) =
λ

2
(trace E)2 + µ trace EI (2)

and the nonlinear strain tensor given by E := 1
2 (C − I) ,where C is the right Cauchy-

Green tensor. Furthermore, we consider the boundary conditions

u = 0 on ∂ΩD := {0} × [0,1]2,
σ · n = 0 on ∂ΩN := ∂Ω \ ∂ΩD,

and the body force f = (−20,0,0)T , for t < 5 · 10−3, and f = 0, afterwards.
In addition to this, we also consider a stationary problem with ∂ttu = 0, i.e.,

divσ = (0,−100,0)T in Ω,

u = 0 on ∂ΩD := {0} × [0,1]2,
σ · n = 0 on ∂ΩN := ∂Ω \ ∂ΩD .

(3)

We transform the model problems to their respective variational formulations and
discretize them using piecewise linear or quadratic finite elements; we denote the
corresponding finite element spaces by Vh = Vh (Ω). For the time-dependent prob-
lem, the resulting semi-discrete problem is further discretized with the Newmark–β
method. In particular, we choose the parameters for the fully implicit constant average
acceleration method, i.e., β = 1/2 and γ = 1/4.

The fully discrete nonlinear equations are linearized using Newton’s method. We
solve the equation

J(u(k))δu(k+1) = R(u(k)), (4)

for the update δu(k+1). Here, J(u(k)) and R(u(k)) are the Jacobian and the nonlinear
residual for the solution u(k), respectively.

2.1 GDSW and RGDSW Preconditioners

We consider the system of linear equations (4) as derived in the previous section.
For simplicity, we use the notation Ax = b in this section.
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Let Ω be decomposed into nonoverlapping subdomains {Ωi}
N
i=1 with typical

diameter H and corresponding overlapping subdomains
{
Ω′i

}N
i=1, resulting from

extending the nonoverlapping subdomains by k layers of elements. We define Ri :
Vh → Vh

i , i = 1, . . . ,N , as the restriction from the global finite element space
Vh to the local finite element space Vh

i := Vh
(
Ω′i

)
and corresponding prolongation

operators RT
i . In addition to that, we can also define restricted and scaled prolongation

operators R̃T
i ; cf., e.g., [1, 4, 7].

Furthermore, let

Γ :=
{
x ∈ (Ωi ∩Ωj) \ ∂ΩD : i , j,1 ≤ i, j ≤ N

}
be the interface of the nonoverlapping domain decomposition.

The GDSW preconditioner, which was introduced by Dohrmann, Klawonn, and
Widlund in [2, 3], is a two-level additive overlapping Schwarz preconditioner with
energy minimizing coarse space and exact solvers. Thus, the preconditioner can be
written in the form

M−1
GDSW = ΦA−1

0 Φ
T +

N∑
i=1

RT
i A−1

i Ri, (5)

where Ai = Ri ART
i . In the second level, we solve the coarse problem matrix

A0 = Φ
T AΦ. The columns of Φ are the basis functions of the coarse space. To

construct the GDSW coarse basis functions, let RΓ j be the restriction from Γ onto
the interface component Γj . For the GDSW coarse space in three dimensions, the in-
terface components are the vertices, edges, and faces. Then, the values of the GDSW
basis functions on Γ read

ΦΓ =
[

RT
Γ1
ΦΓ1 ... RT

ΓM
ΦΓM

]
,

where the columns of ΦΓj are the restrictions of the null space of subdomain Neu-
mann matrices to the interface component Γj . For elasticity, the null space consists
of the rigid body motions, i.e., the translations and rotations. After partitioning the
degrees of freedom into interface (Γ) and interior (I) ones, the matrix A can be
written as

A =
[
AI I AIΓ

AΓI AΓΓ

]
and the GDSW coarse basis functions are the discrete harmonic extensions of ΦΓ
into the interior,

Φ =

[
ΦI

ΦΓ

]
=

[
−A−1

I I AIΓΦΓ

ΦΓ

]
. (6)

The RGDSW coarse space is constructed similarly. However, in general, we only
obtain one basis function for each vertex, resulting in a much smaller dimension
of the coarse space; cf. [5] and, for more details on the parallel implementation in



4 A. Heinlein, C.Hochmuth, A.Klawonn

Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Fig. 1 Sketch of the approximation of the nonoverlapping subdomains and the interface, respec-
tively: uniquely distributed map (left); extension of the uniquely distributed map by one layer of
elements resulting in an overlapping map, where the overlap contains the interface (middle); by se-
lection, using the lower subdomain ID, the a map approximating to the nonoverlapping subdomains
is constructed (right). Taken from [10].

FROSch, [12, 7]. The reduction of the coarse space dimension can also be seen in
Table 1. There are several variants of RGDSWcoarse spaces, which differ in a scaling
of the interface degrees of freedom. Here, we will only consider the most algebraic
variant, which is denoted as Option 1 in [5]; cf. [7] for a detailed description of our
implementation of Option 1 of the RGDSW coarse space.

In our numerical simulations, we will also employ the recycling strategies pre-
sented in [7]. We always reuse the symbolic factorizations from previous time or
Newton iterations. Moreover, we reuse the coarse space from previous iterations and,
for the dynamic problem, additionally the coarse matrix. Furthermore, as in [7], we
always use a scaled first level operator with overlap δ = 1h.

3 Fully Algebraic Construction of GDSW and RGDSW Coarse
Spaces

As previously described, the construction of GDSW and RGDSW coarse spaces
for elasticity problems requires both the domain decomposition interface and the
null space of the operator, i.e., the rigid body motions. Here, we describe how we
construct the coarse space if this information is not available.
Algebraic approximation of the interface If the distribution of the system ma-
trix is unique, the interface cannot be recovered. Therefore, we will carry out the
following process to approximate the nonoverlapping subdomains and hence the
interface. Starting from the unique distribution, we first add one layer of elements to
each subdomain. The overlap of the resulting domain decomposition now contains
the interface but also other finite element nodes. In order to reduce the number of
unnecessary nodes, we compare the subdomain ID of the original unique decom-
position and the decomposition with one layer of overlap and remove nodes from
the overlapping subdomains if the subdomain ID is lower compared to the original
decomposition; this process is sketched in [10] and Figure 1.
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Fig. 2 Left: Slice through elements with high coefficient (µhigh = 103) displayed as a wireframe.
Low coefficient is µlow = 1; cf. [8], for a detailed discussion of the foam geometry used for an
heterogeneous Poisson problem. Right: Solution of dynamic problem at T = 10−2 for ∆t = 10−3

with a warp filter and a 5 times scaling factor.

Incomplete null space The rigid body modes are the translations and rotations
of the elastic body. The translations are constant functions which can be constructed
without any geometric information. Since we are not able to compute the rotations
from the fully assembled matrix and without coordinates of the finite element nodes,
we just omit them in the fully algebraic coarse space; see also [11]. For the results in
section 4, only the number of iterations is negatively effected by omitting rotations
from the coarse space but the time to solution actually benefits from the smaller
coarse space. Note that, from theory, the rotational basis functions are necessary for
numerical scalability. Therefore, we expect that there are problems for which the full
coarse space performs better.

4 Numerical Results

In this section, we compare the GDSW and RDSW preconditioners with exact
interfacemaps and full coarse space, GDSWandRGDSWpreconditioners with exact
interface map but without rotational basis functions, and the fully algebraic variant
with approximated interface and without rotational basis functions; for the sake of
brevity, we denote the three variants as “rotations”, “no rotations”, and “algebraic”,
respectively. As discussed in section 2, we consider a stationary elasticity problem
with homogeneous shear modulus of µ = 5 · 103 and a dynamic elasticity problem
with two material phases; cf. Figure 2 (left) for a graphical representation of the
coefficient distribution of the shear modulus. For both cases, we choose ν = 0.4. For
the stationary homogeneous model problem, we use structured grids and structured
decompositions into square subdomains, whereas for the dynamic problem, we use
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Fig. 3 Strong scaling for dynamic problem up to time T = 2 · 10−2 for the foam geometry.

#cores 64 512 4 096

GDSW

rotations 1 593 16 149 144 045
no rotations 837 8 589 77 085
algebraic P1 disc. 1 395 11 355 84 762
algebraic P2 disc. 1 554 11 466 84 708

RGDSW

rotations 162 2 058 20 250
no rotations 81 1 029 10 125
algebraic P1 disc. 93 1 065 10 218
algebraic P2 disc. 93 1 038 10 134

Table 1 Comparison of coarse matrix sizes for a structured domain decomposition and the approx-
imated subdomain maps for a P1 (H/h = 21) and P2 (H/h = 9) discretizaion.

a fixed unstructured tetrahedral mesh with roughly 3.3 million elements and 588 k
nodes. We use the inexact Newton method of Eisenstat and Walker [6] with a type 2
forcing term until a relative residual of εnl = 10−8 is achieved. The initial forcing term
is ηinit = 10−3 and the maximum and minimum forcing terms are ηmax = 10−2 and
ηmin = 10−8, respectively. Therefore, we use a combination of the Trilinos packages
Thyra and NOX. Furthermore, NOX is used for a backtracking globalization strategy. In
particular, the step length is chosen as 0.5l with l = 0,1, ... until the Armijo condition
is satisfied. All linearized problems are solved with right-preconditioned GMRES
with the corresponding GDSW and RGDSW preconditioners and the tolerance for
the relative residual error is the forcing term η. All computations were carried out
on the supercomputer magnitUDE of the University Duisburg-Essen, Germany.

In Tables 2 and 3, weak scaling results for the stationary model problem with
piecewise linear and piecewise quadratic elements are depicted. Although, iteration
counts are slightly higher for the RGDSW coarse spaces compared to the respective
GDSW coarse spaces, the total computation time is much smaller for RGDSW due
to the lower dimension of the coarse problem. This effect is even stronger for larger
numbers of subdomains and cores; cf. Table 1. Furthermore, we observe competitive
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Prec. Type #cores 64 512 4 096

GDSW

rot. #its. 17.8 19.0 19.0
time 35.1 / 7.4 / 42.5 45.3 / 9.7 / 55.0 167.1 / 26.1 / 183.2

no rot. #its. 27.3 32.0 35.5
time 29.3 / 10.6 / 39.9 32.9 / 13.8 / 46.7 70.8 / 23.3 / 94.1

algebraic #its. 32.8 38.5 39.0
time 39.5 / 13.4 / 52.9 41.6 / 17.2 / 58.8 84.3 / 27.3 / 111.6

RGDSW

rot. #its. 20.5 22.5 22.5
time 28.8 / 8.2 / 37.0 30.9 / 9.5 / 40.4 42.0 / 11.7 / 53.7

no rot. #its. 33.0 37.3 39.5
time 25.2 / 12.4 / 37.6 26.5 / 14.7 / 41.2 30.1 / 18.0 / 48.1

algebraic #its. 40.0 42.0 43.0
time 27.2 / 15.5 / 42.7 28.7 / 16.8 / 45.5 32.9 / 19.6 / 52.5

Table 2 Stationary problem, discretization P1 (H/h = 21), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup / solve / total time and are in seconds. All total times are highlighted.

Prec. Type #cores 64 512 4 096

GDSW

rot. #its. 16.3 17.3 19.3
time 40.1 / 5.9 / 46.0 55.0 / 8.5 / 63.5 223.3 / 24.4 / 247.7

no rot. #its. 24.5 29.3 32.3
time 32.5 / 8.4 / 40.9 38.4 / 11.8 / 46.7 102.2 / 20.0 / 122.2

algebraic #its. 57.5 74.8 78.0
time 42.0 / 20.5 / 62.5 46.0 / 29.9 / 75.9 124.8 / 50.5 / 175.3

RGDSW

rot. #its. 18.8 21.3 19.8
time 27.8 / 6.4 / 34.2 31.1 / 8.0 / 39.1 41.3 / 8.9 / 50.2

no rot. #its. 29.0 32.8 35.5
time 26.2 / 9.4 / 35.6 27.3 / 11.8 / 39.1 31.1 / 14.3 / 45.4

algebraic #its. 60.7 78.5 83.0
time 27.9 / 19.9 / 47.8 28.7 / 27.9 / 56.6 34.1 / 33.1 / 67.2

Table 3 Stationary problem, discretization P2 (H/h = 9), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup / solve / total time and are in seconds. All total times are highlighted.

iteration counts and computing times when using the fully algebraic coarse spaces.
In addition to that, the approximation strategy for the interface seems to perform
better for piecewise linear than for piecewise quadratic elements.

In Figure 3, we present strong scaling results from 48 to 720 cores for the dynamic
model problem. The reported times are the total times for our preconditioners, i.e.,
the sum of the times needed for their construction and their applications in GMRES.
We solve the problem with ∆t = 10−3 up to a final time T = 2 · 10−2 using the
RGDSW rotations coarse space and using the RGDSW algebraic coarse space both
with matrix recycling; cf. [7]. Here, we observe very good strong scalability results
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for both variants even though the model problem has coefficient jumps. Again, the
fully algebraic variant is competitive.
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