Skip to main content

Machine Learning in Adaptive FETI-DP: Reducing the Effort in Sampling

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 2023 Accesses

Abstract

The convergence rate of classic domain decomposition methods in general deteriorates severely for large discontinuities in the coefficient functions of the considered partial differential equation. To retain the robustness for such highly heterogeneous problems, the coarse space can be enriched by additional coarse basis functions. These can be obtained by solving local generalized eigenvalue problems on subdomain edges. In order to reduce the number of eigenvalue problems and thus the computational cost, we use a neural network to predict the geometric location of critical edges, i.e., edges where the eigenvalue problem is indispensable. As input data for the neural network, we use function evaluations of the coefficient function within the two subdomains adjacent to an edge. In the present article, we examine the effect of computing the input data only in a neighborhood of the edge, i.e., on slabs next to the edge. We show numerical results for both the training data as well as for a concrete test problem in form of a microsection subsection for linear elasticity problems. We observe that computing the sampling points only in one half or one quarter of each subdomain still provides robust algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning, volume 1. MIT press Cambridge, 2016.

    MATH  Google Scholar 

  2. A. Heinlein, A. Klawonn, J. Knepper, and O. Rheinbach. An adaptive GDSW coarse space for two-level overlapping Schwarz methods in two dimensions. 2019. Proceedings of the International Conference on Domain Decomposition Methods 24, Springer LNCSE, Vol. 125, January 2019, pp. 373–382. https://doi.org/10.1007/978-3-319-93873-8_35.

  3. A. Heinlein, A. Klawonn, J. Knepper, and O. Rheinbach. Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D. Electronic Transactions on Numerical Analysis (ETNA), 48:156–182, 2018.

    Article  MathSciNet  Google Scholar 

  4. A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Machine Learning in Adaptive FETI-DP - A Comparison of Smart and Random Training Data. 2018. TR series, Center for Data and Simulation Science, University of Cologne, Germany, Vol. 2018-5. http://kups.ub.uni-koeln.de/id/eprint/8645. Accepted for publication in the proceedings of the International Conference on Domain Decomposition Methods 25, Springer LNCSE, May 2019.

  5. A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Machine Learning in Adaptive Domain Decomposition Methods - Predicting the Geometric Location of Constraints. SIAM J. Sci. Comput., 41(6):A3887–A3912, 2019.

    Article  MathSciNet  Google Scholar 

  6. M. Jarošová, A. Klawonn, and O. Rheinbach. Projector preconditioning and transformation of basis in FETI-DP algorithms for contact problems. Math. Comput. Simulation, 82(10):1894–1907, 2012.

    Article  MathSciNet  Google Scholar 

  7. A. Klawonn, M. Kühn, and O. Rheinbach. Adaptive coarse spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput., 38(5):A2880–A2911, 2016.

    Article  MathSciNet  Google Scholar 

  8. A. Klawonn, M. Kühn, and O. Rheinbach. Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems. Electron. Trans. Numer. Anal., 49:1–27, 2018.

    Article  MathSciNet  Google Scholar 

  9. A. Klawonn and O. Rheinbach. Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results. SIAM J. Sci. Comput., 34(1):A459–A484, 2012.

    Article  MathSciNet  Google Scholar 

  10. A. Klawonn and O. B. Widlund. Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math., 59(11):1523–1572, 2006.

    Article  MathSciNet  Google Scholar 

  11. J. Mandel and B. Sousedík. Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Engrg., 196(8):1389–1399, 2007.

    Article  MathSciNet  Google Scholar 

  12. J. Mandel, B. Sousedík, and J. Sístek. Adaptive BDDC in three dimensions. Math. Comput. Simulation, 82(10):1812–1831, 2012.

    Article  MathSciNet  Google Scholar 

  13. A. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, 2016.

    Google Scholar 

  14. S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning. Cambridge University Press, 2014.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Klawonn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinlein, A., Klawonn, A., Lanser, M., Weber, J. (2021). Machine Learning in Adaptive FETI-DP: Reducing the Effort in Sampling. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_58

Download citation

Publish with us

Policies and ethics