Skip to main content

A Multi-Scale Flow Model for Studying Blood Circulation in Vascular System

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Abstract

In this paper, we demonstrate a multi-scale model for studying blood flow in the vascular structures of an organ. The model may be used for a tracer concentration flow simulation replicating Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE–MRI) data. A 1D vascular graph model that represents blood flow through a vascular vessel network is coupled with a single-phase Darcy flow model for the capillary bed which is assumed as a porous media. Numerical experiments show the blood circulation in the system closely related to the structure and parameter of the vascular system, that gives qualitatively realistic tracer concentration flow. This model is a starting point for further investigation in development into clinical applications, using both real data and MRI analysis software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Reichold, M. Stampanoni, A. L. Keller, A. Buck, P. Jenny, and B. Weber, “Vascular graph model to simulate the cerebral blood flow in realistic vascular networks,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 8, pp. 1429–1443, 2009, pMID: 19436317. [Online]. Available: https://doi.org/10.1038/jcbfm.2009.58

  2. T. Passerini, M. d. Luca, L. Formaggia, A. Quarteroni, and A. Veneziani, “A 3d/1d geometrical multiscale model of cerebral vasculature,” Journal of Engineering Mathematics, vol. 64, no. 4, p. 319, Mar 2009. [Online]. Available: https://doi.org/10.1007/s10665-009-9281-3

  3. P. Perdikaris, L. Grinberg, and G. E. Karniadakis, “Multiscale modeling and simulation of brain blood flow,” Physics of Fluids, vol. 28, no. 2, p. 021304, 2016. [Online]. Available: https://doi.org/10.1063/1.4941315

  4. A. Quarteroni, A. Veneziani, and C. Vergara, “Geometric multiscale modeling of the cardiovascular system, between theory and practice,” Computer Methods in Applied Mechanics and Engineering, 2016.

    Google Scholar 

  5. U. N. Qohar, A. Z. Munthe-Kaas, J. M. Nordbotten, and E. Hanson, “A multi-scale flow model for blood regulation in a realistic vascular system,” Theoretical Biology and Medical Modelling (in review), 02 2020. [Online]. Available: https://dx.doi.org/10.21203/rs.2.23112/v1

  6. C. Chnafa, K. Valen-Sendstad, O. Brina, V. Pereira, and D. Steinman, “Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops,” Journal of Biomechanics, vol. 51, pp. 83–88, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0021929016312672

  7. J. P. Mynard and K. Valen-Sendstad, “A unified method for estimating pressure losses at vascular junctions,” International Journal for Numerical Methods in Biomedical Engineering, vol. 31, no. 7, pp. n/a–n/a, 2015, cnm.2717. [Online]. Available: http://dx.doi.org/10.1002/cnm.2717

  8. H. Darcy, “Les fontaines publique de la ville de dijon,” p. 570, 1856.

    Google Scholar 

  9. E. Hodneland, E. Hanson, O. Sævareid, G. Nævdal, A. Lundervold, V. Šoltészová, A. Z. Munthe-Kaas, A. Deistung, J. R. Reichenbach, and J. M. Nordbotten, “A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model,” PLOS Computational Biology, vol. 15, no. 6, pp. 1–31, 06 2019. [Online]. Available: https://doi.org/10.1371/journal.pcbi.1007073

  10. I. Aavatsmark, “Interpretation of a two-point flux stencil for skew parallelogram grids,” Computational Geosciences, vol. 11, no. 3, pp. 199–206, Sep 2007. [Online]. Available: https://doi.org/10.1007/s10596-007-9042-1

  11. J. F. Cohnheim, Untersuchungen über die embolischen Prozesse, Berlin: Hirschwald, 1872.

    Google Scholar 

  12. E. A. Hanson and A. Lundervold, “Local/non-local regularized image segmentation using graph-cuts,” International Journal of Computer Assisted Radiology and Surgery, vol. 8, no. 6, pp. 1073–1084, Nov 2013.

    Article  Google Scholar 

  13. A. R. Pries, T. W. Secomb, and P. Gaehtgens, “Design principles of vascular beds,” Circulation Research, vol. 77, no. 5, pp. 1017–1023, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulin Nuha Abdul Qohar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qohar, U.N.A., Munthe-Kaas, A.Z., Nordbotten, J.M., Hanson, E.A. (2021). A Multi-Scale Flow Model for Studying Blood Circulation in Vascular System. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_73

Download citation

Publish with us

Policies and ethics