Skip to main content

Generative Adversarial Networks for Video Prediction with Action Control

  • Conference paper
  • First Online:
Artificial Intelligence. IJCAI 2019 International Workshops (IJCAI 2019)

Abstract

The ability of predicting future frames in video sequences, known as video prediction, is an appealing yet challenging task in computer vision. This task requires an in-depth representation of video sequences and a deep understanding of real-word causal rules. Existing approaches for tackling the video prediction problem can be classified into two categories: deterministic and stochastic methods. Deterministic methods lack the ability of generating possible future frames and often yield blurry predictions. On the other hand, although current stochastic approaches can predict possible future frames, their models lack the ability of action control in the sense that they cannot generate the desired future frames conditioned on a specific action. In this paper, we propose new generative adversarial networks (GANs) for stochastic video prediction. Our framework, called VPGAN, employs an adversarial inference model and a cycle-consistency loss function to empower the framework to obtain more accurate predictions. In addition, we incorporate a conformal mapping network structure into VPGAN to enable action control for generating desirable future frames. In this way, VPGAN is able to produce fake videos of an object moving along a specific direction. Experimental results show that a combination of VPGAN and pre-trained image segmentation models outperforms existing stochastic video prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  2. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. In: 6th International Conference on Learning Representations (2018)

    Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3), 433–467 (1995)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  7. Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: Proceedings of the 35th International Conference on Machine Learning, pp. 1182–1191 (2018)

    Google Scholar 

  8. Denton, E.L., Birodkar, V.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems, pp. 4417–4426 (2017)

    Google Scholar 

  9. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  10. Dumoulin, V., et al.: Adversarially learned inference. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  11. Finn, C., Goodfellow, I.J., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Advances in Neural Information Processing Systems, pp. 64–72 (2016)

    Google Scholar 

  12. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hu, Z., Turki, T., Phan, N., Wang, J.T.L.: A 3D atrous convolutional long short-term memory network for background subtraction. IEEE Access 6, 43450–43459 (2018)

    Article  Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Kingma, D.P.: Fast gradient-based inference with continuous latent variable models in auxiliary form. arXiv preprint arXiv:1306.0733 (2013)

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  19. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523 (2018)

  20. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  21. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? arXiv preprint arXiv:1801.04406 (2018)

  22. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: 11th Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  23. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.P.: Action-conditional video prediction using deep networks in Atari games. In: Advances in Neural Information Processing Systems, pp. 2863–2871 (2015)

    Google Scholar 

  24. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems, pp. 2352–2360 (2016)

    Google Scholar 

  25. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: 17th International Conference on Pattern Recognition, pp. 32–36 (2004)

    Google Scholar 

  28. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  31. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1526–1535 (2018)

    Google Scholar 

  32. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033 (2017)

  33. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 835–851. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_51

    Chapter  Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2242–2251 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by an NJIT faculty seed grant on deep learning and by the U.S. National Science Foundation under Grant No. 1927578. We thank the reviewers of IJCAI 2019 workshops for their thoughtful comments, which helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Wang, J.T.L. (2020). Generative Adversarial Networks for Video Prediction with Action Control. In: El Fallah Seghrouchni, A., Sarne, D. (eds) Artificial Intelligence. IJCAI 2019 International Workshops. IJCAI 2019. Lecture Notes in Computer Science(), vol 12158. Springer, Cham. https://doi.org/10.1007/978-3-030-56150-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56150-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56149-9

  • Online ISBN: 978-3-030-56150-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics