Skip to main content

A Seamless Self-configuring EtherCAT Master Redundancy Protocol

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2020)

Abstract

The ever-increasing demand for system autonomy in all kinds of applications is accompanied by the need for increased fault-tolerance to build highly-reliable systems. EtherCAT technology is one of the most widely used industrial Ethernet solutions for process control and automation. While EtherCAT provides some fault-tolerance mechanisms, it does not protect an industrial control system against the malfunction of its master node. In this paper, we present a software-based master redundancy protocol for EtherCAT, which enables an EtherCAT network to seamlessly recover from master node failures within the same communication cycle. Moreover, the protocol integrates seamlessly into new and existing applications without the need to re-implement functionality and without running into compatibility problems. Experimental results showed that communication cycles in the sub-millisecond range are supported. Hence, the presented master redundancy protocol provides an easy to use, scalable, and cost-effective solution to increase the reliability of EtherCAT networks.

Supported by the H2020 project TEACHING (n. 871385) - www.teaching-h2020.eu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms.

  2. 2.

    www.ethercat.org.

  3. 3.

    https://github.com/OpenEtherCATsociety/SOEM.

References

  1. Alvarez Vadillo, I., Ballesteros, A., Barranco, M., Gessner, D., Djerasevic, S., Proenza, J.: Fault tolerance in highly reliable ethernet-based industrial systems. Proc. IEEE 107(6), 977–1010 (2019). https://doi.org/10.1109/JPROC.2019.2914589

    Article  Google Scholar 

  2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2

    Article  Google Scholar 

  3. Goodloe, A., Pike, L.: Monitoring distributed real-time system - a survey and future directions (2010)

    Google Scholar 

  4. Maruyama, T., Yamada, T.: Spatial-temporal communication redundancy for high performance ethercat master. In: Proceedings of the IEEE, pp. 1–6 (2018). https://doi.org/10.1109/ETFA.2017.8247720

  5. Orfanus, D., Indergaard, R., Prytz, G., Wien, T.: Ethercat-based platform for distributed control in high-performance industrial applications. In: 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–8. IEEE, 10 September 2013–13 September 2013. https://doi.org/10.1109/ETFA.2013.6647972

  6. Poledna, S.: Fault-Tolerant Real-time Systems: The Problem of Replica Determinism. The Kluwer International Series in Engineering and Computer Science, vol. 345. Real-Time Systems, Kluwer Academic, Boston (1996)

    Google Scholar 

  7. Prytz, G., Skaalvik, J.: Redundant and synchronized ethercat network. In: International Symposium on Industrial Embedded System (SIES), pp. 201–204. IEEE, 7 July 2010–9 July 2010. https://doi.org/10.1109/SIES.2010.5551386

  8. Prytz, G. (ed.): A Performance Analysis of EtherCAT and PROFINET RT. IEEE (2008). https://doi.org/10.1109/ETFA.2017.8247720

  9. Rostan, M., Stubbs, J.E., Dzilno, D.: Ethercat enabled advanced control architecture. In: 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 39–44. IEEE, 11 July 2010– 13 July 2010. https://doi.org/10.1109/ASMC.2010.5551414

  10. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990). https://doi.org/10.1145/98163.98167

    Article  Google Scholar 

  11. Seno, L., Vitturi, S., Zunino, C.: Real time ethernet networks evaluation using performance indicators. In: 2009 IEEE Conference on Emerging Technologies & Factory Automation, pp. 1–8. IEEE, 22 September 2009–25 September 2009. https://doi.org/10.1109/ETFA.2009.5347135

  12. Spiegel, G., Vysotski, V.: Bus participant device and method for operating a bus subscriber device (2018)

    Google Scholar 

  13. Toh, C.L., Norum, L.E.: A performance analysis of three potential control network for monitoring and control in power electronics converter. In: 2012 IEEE International Conference on Industrial Technology, pp. 224–229. IEEE, 19 March 2012–21 March 2012. https://doi.org/10.1109/ICIT.2012.6209942

  14. Vitturi, S., Zunino, C., Sauter, T.: Industrial communication systems and their future challenges: next-generation ethernet, IIoT, and 5G. Proc. IEEE 107(6), 944–961 (2019). https://doi.org/10.1109/JPROC.2019.2913443

    Article  Google Scholar 

  15. Willig, A., Wolisz, A.: Ring stability of the profibus token-passing protocol over error-prone links. IEEE Trans. Industr. Electron. 48(5), 1025–1033 (2001). https://doi.org/10.1109/41.954567

    Article  Google Scholar 

  16. Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communication: automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag. 11(1), 17–27 (2017). https://doi.org/10.1109/MIE.2017.2649104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dobaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobaj, J., Seidl, M., Krug, T., Krisper, M., Macher, G. (2020). A Seamless Self-configuring EtherCAT Master Redundancy Protocol. In: Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2020. Communications in Computer and Information Science, vol 1251. Springer, Cham. https://doi.org/10.1007/978-3-030-56441-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56441-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56440-7

  • Online ISBN: 978-3-030-56441-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics