Skip to main content

ALEC: An Accurate, Light and Efficient Network for CAPTCHA Recognition

  • Conference paper
  • First Online:
Document Analysis Systems (DAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12116))

Included in the following conference series:

  • 1262 Accesses

Abstract

The CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) is a common and effective security mechanism applied by many websites and applications. CAPTCHA recognition is an important and practical problem in text recognition research. Compared with traditional methods, DCNN (Deep Convolutional Neural Network) has achieved competitive accuracy in CAPTCHA recognition recently. However, current CAPTCHA recognition researches based on DCNN usually use conventional convolution network, which causes high computation complexity and great computing resource consumption. Aiming at the problems, we propose an Accurate, Light and Efficient network for CAPTCHA recognition (ALEC) based on the encoder-decoder structure. The ALEC can greatly reduce the computation complexity and parameters while ensuring the recognition accuracy. In this paper, standard convolutions are replaced by depthwise separable convolutions to improve computational efficiency. The architecture utilizes group convolution and convolution channels reduction to build a deep narrow network, which reduces the model parameters and improves generalization performance. Additionally, effective and efficient attention modules are applied to suppress the background noise and extract valid foreground context. Experiments demonstrate that ALEC not only has higher speed with fewer parameters but also improves the accuracy of CAPTCHA recognition. In detail, the ALEC achieves about 4 times speed up over the standard ResNet-18 while reducing 97% parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/lepture/captcha.

  2. 2.

    https://github.com/skyduy/CAPTCHAgenerator.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. El Ahmad, A.S., Yan, J., Tayara, M.: The robustness of Google CAPTCHA’s. Computing Science, Newcastle University (2011)

    Google Scholar 

  3. El Ahmad, A.S., Yan, J., Marshall, L.: The robustness of a new captcha. In: Proceedings of the Third European Workshop on System Security, pp. 36–41. ACM (2010)

    Google Scholar 

  4. Garg, G., Pollett, C.: Neural network captcha crackers. In: 2016 Future Technologies Conference (FTC), pp. 853–861. IEEE (2016)

    Google Scholar 

  5. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376. ACM (2006)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hou, L., Yao, Q., Kwok, J.T.: Loss-aware binarization of deep networks. arXiv preprint arXiv:1611.01600 (2016)

  8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  9. Huang, S.-Y., Lee, Y.-K., Bell, G., Zhan-he, O.: An efficient segmentation algorithm for captchas with line cluttering and character warping. Multimedia Tools Appl. 48(2), 267–289 (2010)

    Article  Google Scholar 

  10. Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Le, T.A., Baydin, A.G., Zinkov, R., Wood, F.: Using synthetic data to train neural networks is model-based reasoning. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3514–3521. IEEE (2017)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  14. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  15. Al Nachar, R., Inaty, E., Bonnin, P.J., Alayli, Y.: Breaking down captcha using edge corners and fuzzy logic segmentation/recognition technique. Secur. Commun. Netw. 8(18), 3995–4012 (2015)

    Article  Google Scholar 

  16. Qing, K., Zhang, R.: A multi-label neural network approach to solving connected captchas. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1313–1317. IEEE (2017)

    Google Scholar 

  17. Rui, C., Jing, Y., Hu, R., Huang, S.: A novel LSTM-RNN decoding algorithm in captcha recognition. In: 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 766–771. IEEE (2013)

    Google Scholar 

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  19. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2015)

    Article  Google Scholar 

  20. Sifre, L., Mallat, S.: Rigid-motion scattering for image classification. Ph. D. dissertation (2014)

    Google Scholar 

  21. Singh, V.P., Pal, P.: Survey of different types of captcha. Int. J. Comput. Sci. Inf. Technol. 5(2), 2242–2245 (2014)

    MathSciNet  Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  23. Tulloch, A., Jia, Y.: High performance ultra-low-precision convolutions on mobile devices. arXiv preprint arXiv:1712.02427 (2017)

  24. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_18

    Chapter  Google Scholar 

  25. Wang, J., Qin, J.H., Xiang, X.Y., Tan, Y., Pan, N.: Captcha recognition based on deep convolutional neural network. Math. Biosci. Eng 16(5), 5851–5861 (2019)

    Article  MathSciNet  Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  27. Yan, J., El Ahmad, A.S.: Breaking visual captchas with Naive pattern recognition algorithms. In: Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pp. 279–291. IEEE (2007)

    Google Scholar 

  28. Yan, J., El Ahmad, A.S.: A low-cost attack on a Microsoft captcha. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 543–554. ACM (2008)

    Google Scholar 

  29. Zhang, L., Zhang, L., Huang, S.G., Shi, Z.X.: A highly reliable captcha recognition algorithm based on rejection. Acta Automatica Sinica 37(7), 891–900 (2011)

    Google Scholar 

  30. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  31. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Jiang, Q., Song, Q., Zhang, R., Wei, X. (2020). ALEC: An Accurate, Light and Efficient Network for CAPTCHA Recognition. In: Bai, X., Karatzas, D., Lopresti, D. (eds) Document Analysis Systems. DAS 2020. Lecture Notes in Computer Science(), vol 12116. Springer, Cham. https://doi.org/10.1007/978-3-030-57058-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57058-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57057-6

  • Online ISBN: 978-3-030-57058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics