Skip to main content

Leak-Resistant Design of DNA Strand Displacement Systems

  • Conference paper
  • First Online:
Bio-inspired Information and Communication Technologies (BICT 2020)

Abstract

Although a number of dynamically-controlled nanostructures and programmable DNA Strand Displacement (DSD) systems have been designed using DNA strand displacement, predictability and scalability of these DNA-based systems remain limited due to leakages introduced by spuriously triggered displacement events. We present a systematic design method for implementing leak-resistant DNA strand displacement systems in which each legitimate displacement event requires signal species to bind cooperatively at the two designated toehold binding sites in the protected fuel complexes, and thus inhibits spurious displacement events. To demonstrate the potential of the leak-resistant design approach for the construction of arbitrary complex digital circuits and systems with analog behaviors, we present domain-level designs and displacement pathways of the basic building blocks of the DNA strand displacement cascades, e.g. OR, AND gates, and an elementary bimolecular reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The antiparallel DX molecule provides a rigid structure  [21], where its two helices are tightly held together (helical axes separated by \(\approx \)4.0 nm) by two crossovers. Note that, since we use only two ends of the helices to sequester the signal and create two toehold sticky ends, the second crossover is replaced by a half-crossover  [20].

  2. 2.

    The stability of the base-pairs flanking a bulge loop within the DNA duplex depends on the types of flanking bases and other structural aspects  [13]. The destabilizing effect can be mitigated by using stronger G-C pairs on each side of the bulge loop.

References

  1. Bath, J., Turberfield, A.J.: DNA nanomachines. Nat. Nanotechnol. 2(5), 275 (2007)

    Article  CAS  Google Scholar 

  2. Cardelli, L.: Strand algebras for DNA computing. In: Deaton, R., Suyama, A. (eds.) DNA 2009. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10604-0_2

    Chapter  Google Scholar 

  3. Chen, X., Briggs, N., McLain, J.R., Ellington, A.D.: Stacking nonenzymatic circuits for high signal gain. Proc. Nat. Acad. Sci. 110(14), 5386–5391 (2013)

    Article  CAS  Google Scholar 

  4. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational nucleic acid design. Nucleic Acids Res. 32(4), 1392–1403 (2004)

    Article  CAS  Google Scholar 

  5. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)

    Article  CAS  Google Scholar 

  6. Genot, A.J., Bath, J., Turberfield, A.J.: Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133(50), 20080–20083 (2011)

    Article  CAS  Google Scholar 

  7. Green, S.J., Lubrich, D., Turberfield, A.J.: DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91(8), 2966–2975 (2006)

    Article  CAS  Google Scholar 

  8. Jose, D., Datta, K., Johnson, N.P., von Hippel, P.H.: Spectroscopic studies of position-specific DNA “breathing” fluctuations at replication forks and primer-template junctions. Proc. Nat. Acad. Sci. 106(11), 4231–4236 (2009)

    Article  CAS  Google Scholar 

  9. Kotani, S., Hughes, W.L.: Multi-arm junctions for dynamic DNA nanotechnology. J. Am. Chem. Soc. 139(18), 6363–6368 (2017)

    Article  CAS  Google Scholar 

  10. Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous DNA branch migration. Proc. Nat. Acad. Sci. 91(6), 2021–2025 (1994)

    Article  CAS  Google Scholar 

  11. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  CAS  Google Scholar 

  12. Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., Lyamichev, V.I.: The kinetics of oligonucleotide replacements. J. Mol. Biol. 297(2), 511–520 (2000)

    Article  CAS  Google Scholar 

  13. Rosen, M.A., Shapiro, L., Patel, D.J.: Solution structure of a trinucleotide A-T-A bulge loop within a DNA duplex. Biochemistry 31(16), 4015–4026 (1992)

    Article  CAS  Google Scholar 

  14. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  CAS  Google Scholar 

  15. Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126(35), 10834–10835 (2004)

    Article  CAS  Google Scholar 

  16. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  CAS  Google Scholar 

  17. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358(6369), eaal2052 (2017)

    Article  Google Scholar 

  18. Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement systems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_9

    Chapter  Google Scholar 

  19. Wang, B., Thachuk, C., Ellington, A.D., Winfree, E., Soloveichik, D.: Effective design principles for leakless strand displacement systems. Proc. Nat. Acad. Sci. 115(52), E12182–E12191 (2018)

    Article  CAS  Google Scholar 

  20. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623 (2012)

    Article  CAS  Google Scholar 

  21. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539 (1998)

    Article  CAS  Google Scholar 

  22. Yin, P., Choi, H.M., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318 (2008)

    Article  CAS  Google Scholar 

  23. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program. Evolv. Mach. 4(2), 111–122 (2003)

    Article  Google Scholar 

  24. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605 (2000)

    Article  CAS  Google Scholar 

  25. Zhang, D.Y.: Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133(4), 1077–1086 (2010)

    Article  Google Scholar 

  26. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103 (2011)

    Article  CAS  Google Scholar 

  27. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

    Article  CAS  Google Scholar 

  28. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gautam, V. (2020). Leak-Resistant Design of DNA Strand Displacement Systems. In: Chen, Y., Nakano, T., Lin, L., Mahfuz, M., Guo, W. (eds) Bio-inspired Information and Communication Technologies. BICT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-030-57115-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57115-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57114-6

  • Online ISBN: 978-3-030-57115-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics