Skip to main content

Co-simulation and Verification of a Non-linear Control System for Cogging Torque Reduction in Brushless Motors

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12226))

Included in the following conference series:

Abstract

This work aims at demonstrating the benefits of integrating co-simulation and formal verification in the standard design flow of a brushless power drive system for precision robotic applications. A sufficient condition on controller gain for system stability is derived from the system’s mathematical model, including a control algorithm for the reduction of cogging torque. Then, using co-simulation and design space exploration, fine tuning of the controller gain parameters has been executed, exploiting the results from the formal verification.

Work partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project (Departments of Excellence), and by the PRA 2018_81 project entitled “Wearable sensor systems: personalized analysis and data security in healthcare” funded by the University of Pisa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on Quantitative Evaluation of Systems (QEST 2006), pp. 125–126, September 2006

    Google Scholar 

  3. Bernardeschi, C., Domenici, A.: Verifying safety properties of a nonlinear control by interactive theorem proving with the Prototype Verification System. Inf. Process. Lett. 116(6), 409–415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment for model-based analysis of cyber-physical systems. IEEE Trans. Software Eng. 44(6), 512–533 (2018)

    Article  Google Scholar 

  5. Bernardeschi, C., Domenici, A., Saponara, S.: Formal verification in the loop to enhance verification of safety-critical cyber-physical systems. In: Proceedings of Interactive Workshop on the Industrial Application of Verification and Testing, InterAVT 2019 (ETAPS 2019), Electronic Communications of the EASST (2019)

    Google Scholar 

  6. Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International MODELICA Conference, Munich, Germany, 3–5 September 2012, pp. 173–184. No. 76 in Linköping Electronic Conference Proceedings, Linköping University Electronic Press (2012)

    Google Scholar 

  7. Dini, P., Saponara, S.: Cogging torque reduction in brushless motors by a nonlinear control technique. Energies 12(11), 2224 (2019)

    Article  Google Scholar 

  8. Domenici, A., Fagiolini, A., Palmieri, M.: Integrated simulation and formal verification of a simple autonomous vehicle. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 300–314. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_21

    Chapter  Google Scholar 

  9. Dutertre, B.: Elements of mathematical analysis in PVS. In: Goos, G., Hartmanis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 141–156. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0105402

    Chapter  Google Scholar 

  10. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna development method. In: Wah, B. (ed.) Wiley Encyclopedia of Computer Science and Engineering. Wiley (2007)

    Google Scholar 

  11. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  12. Gamble, C.: DSE in the INTO-CPS platform. Technical report, D5.3e, INTO-CPS Deliverable (2017)

    Google Scholar 

  13. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: State of the art. CoRR abs/1702.00686 (2017)

    Google Scholar 

  14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS 1996, pp. 278–292. IEEE Computer Society, Washington (1996)

    Google Scholar 

  15. Isidori, A.: Nonlinear Control System. Communications and Control Engineering. Springer, London (1995). https://doi.org/10.1007/978-1-84628-615-5

    Book  Google Scholar 

  16. Larsen, P.G., et al.: Integrated tool chain for model-based design of Cyber-Physical Systems: the INTO-CPS project. In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, April 2016

    Google Scholar 

  17. Larsen, P.G., Gamble, C., Pierce, K., Ribeiro, A., Lausdahl, K.: Support for co-modelling and co-simulation: the Crescendo tool. In: Fitzgerald, J., Larsen, P.G., Verhoef, M. (eds.) Collaborative Design for Embedded Systems. LNCS, pp. 97–114. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54118-6_5

    Chapter  Google Scholar 

  18. Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 229–321. Oxford University Press Inc., New York (1994)

    Google Scholar 

  19. Lotov, A.V., Miettinen, K.: Visualizing the Pareto frontier. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 213–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_9

    Chapter  Google Scholar 

  20. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Safety. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

    Book  MATH  Google Scholar 

  21. Muñoz, C.: Rapid prototyping in PVS. Technical report, NIA 2003–03, NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA, USA (2003)

    Google Scholar 

  22. Nibert, J., Herniter, M.E., Chambers, Z.: Model-based system design for MIL, SIL, and HIL. World Electr. Veh. J. 5(4), 1121–1130 (2012)

    Article  Google Scholar 

  23. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_217

    Chapter  Google Scholar 

  24. Palensky, P., van der Meer, A., Lopez, C., Joseph, A., Pan, K.: Applied cosimulation of intelligent power systems: implementing hybrid simulators for complex power systems. IEEE Ind. Electron. Mag. 11(2), 6–21 (2017)

    Article  Google Scholar 

  25. Palensky, P., Meer, A.A.V.D., Lopez, C.D., Joseph, A., Pan, K.: Cosimulation of intelligent power systems: fundamentals, software architecture, numerics, and coupling. IEEE Ind. Electron. Mag. 11(1), 34–50 (2017)

    Article  Google Scholar 

  26. Palmieri, M., Bernardeschi, C., Masci, P.: A flexible framework for FMI-based co-simulation of human-centred cyber-physical systems. In: Software Technologies: Applications and Foundations - STAF 2018 Collocated Workshops, Toulouse, June 25–29 France 2018, Revised Selected Papers, pp. 21–33 (2018)

    Google Scholar 

  27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 46–57, October 1977

    Google Scholar 

  28. Pulle, D., Darnell, P., Veltman, A.: Applied Control of Electrical Drives: Real Time Embedded and Sensorless Control Using VisSimTM and PLECSTM. Power Systems. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20043-9

    Book  Google Scholar 

  29. Tudorache, T., Trifu, I., Ghita, C., Bostan, V.: Improved mathematical model of PMSM taking into account cogging torque oscillations. Adv. Electr. Comput. Eng. 12(3), 59–64 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their valuable suggestions. The authors also thank the INTO-CPS project for providing the co-simulation environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Bernardeschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernardeschi, C., Dini, P., Domenici, A., Saponara, S. (2020). Co-simulation and Verification of a Non-linear Control System for Cogging Torque Reduction in Brushless Motors. In: Camara, J., Steffen, M. (eds) Software Engineering and Formal Methods. SEFM 2019. Lecture Notes in Computer Science(), vol 12226. Springer, Cham. https://doi.org/10.1007/978-3-030-57506-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57506-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57505-2

  • Online ISBN: 978-3-030-57506-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics