Abstract
Bivariate value-at-risks and bivariate average value-at-risks are defined with copula functions, and stochastic orders are induced from these bivariate value-at-risks and bivariate average value-at-risks. Value-at-risk order is almost equivalent to the first-order stochastic dominance, however it is made clear that average value-at-risk order is weaker than the second-order stochastic dominance and it has similar properties. We find that average value-at-risk order is an important criterion as a stochastic order in multi-object case-based reasoning with risk aversity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arrow, K.J.: Essays in the Theory of Risk-Bearing. Markham, Chicago (1971)
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)
Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)
Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38, 555–593 (1992)
Nelson, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/0-387-28678-0
Pratt, J.W.: Risk aversion in the small and the large. Econometrica 32, 122–136 (1964)
Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007). https://doi.org/10.1007/978-0-387-34675-5
Yoshida, Y.: Weighted quasi-arithmetic means and a risk index for stochastic environments. Int. J. Uncertain. Fuzziness Knowl. Based Syst. (IJUFKS) 16(suppl.), 1–16 (2011)
Yoshida, Y.: An ordered weighted average with a truncation weight on intervals. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 45–55. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_6
Yoshida, Y.: Weighted quasi-arithmetic mean on two-dimensional regions and their applications. In: Torra, V., Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 42–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23240-9_4
Yoshida, Y.: Weighted quasi-arithmetic means on two-dimensional regions: an independent case. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 82–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45656-0_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Proof of Lemma 2.1
(i) For \(x_1 = {\mathrm{VaR}}_{q_1}(X_1)\) and \(x_2 = {\mathrm{VaR}}_{q_2}(X_2)\), from (2.3) and (2.8) we have \( c(q_1,q_2) = \frac{\partial ^2}{\partial q_1 \partial q_2} P(X_1 \le x_1, X_2 \le x_2) = w(x_1, x_2) \frac{dx_1}{d q_1} \frac{dx_2}{d q_2}. \) Thus we get (i). (ii) Since \(P(X_1 \le x_1) = q_1\) and \(P(X_2 \le x_2) = q_2\), we get \( w_1(x_1) \, dx_1 = dq_1 \ \text{ and } \ w_2(x_2) \, dx_2 = dq_2. \) (iii) is trivial from (i) and (ii). \(\square \)
Proof of Lemma 2.2
Let a random \((X_1,X_2) \in \mathcal{X}^2\) and a probability \(p \in (0,1]\). (i) From (2.4), (2.5) and (2.6), we have
Thus we get (i). (ii) From (i), (2.7) and Lemma 2.1(i), we also have
Therefore this lemma holds. \(\square \)
Proof of Lemma 2.3
Value-at-risks (2.1) has similar properties (Artzner [2]). Therefore from Lemma 2.2(i) we can easily check (i)–(iii). \(\square \)
Proof of Lemma 2.4
Value-at-risks (2.2) has similar properties to (i)–(iii) [2]. From Lemma 2.2(ii), we can easily check (i)–(iii). (iv) It is well-known in one-dimensional case (2.2) that average value-at-risks has sub-additivity:
for all \(X,Y \in \mathcal{X}\) (Artzner [2] and Yoshida [9]). Let \((X_1,X_2), (Y_1,Y_2) \in \mathcal{X}^2\) and let \(p \in (0,1]\) and \((p_1, p_2) \in \varGamma (p)\). From (2.9) and (2.14), maps \( q_1 \mapsto \frac{\partial }{\partial q_1} C(q_1,p_2) = \int _{0}^{p_2} \! \! c(q_1, q_2) \, dq_2 \ \text{ and } \ q_2 \mapsto \frac{\partial }{\partial q_2} C(p_1, q_2) = \int _{0}^{p_1} \! \! c(q_1, q_2) \, dq_1 \) are non-increasing. When we approximate these nonnegative-valued functions by sums of non-increasing step functions on (0, 1], \(q \mapsto \gamma 1_{[0,\delta ]}(q) \, (\gamma >0, \, \delta \in (0,1] )\), from (A.1) we can check
Therefore we obtain (i) from Lemma 2.2(ii), and this lemma holds. \(\square \)
Proof of Theorem 3.1
(a) \(\Longrightarrow \) (b) is trivial when we let \(x_1 \rightarrow \infty \) or \(x_2 \rightarrow \infty \) in Definition 3.1. (b) \(\Longrightarrow \) (a): From (2.9), maps \(p_1 \mapsto C(p_1,p_2)\) and \(p_2 \mapsto C(p_1,p_2)\) are non-decreasing. And we get (a) from (b) with (2.4). (a) \(\Longrightarrow \) (c): Let \(f \in \mathcal{L}^2\). We can approximate decreasing function \(- f\) by sums of step functions \(\gamma 1_{(-\infty , x_1] \times (-\infty ,x_2]}\) (\(\gamma >0\)) and we get (c) from (3.3). (c) \(\Longrightarrow \) (a): We can easily check (a) when we approximate step functions \(1_{(-\infty , x_1] \times (-\infty ,x_2]}\) by decreasing functions \(- f\) with \(f \in \mathcal{L}^2\). \(\square \)
Proof of Theorem 3.2
(i) Letting \(R \uparrow D\) in \(M_w^f(R) \preceq M_v^f(R)\), we get \( E(f(X_1,X_2)) \le E(f(Y_1,Y_2)). \) (ii) For simplicity, we use small order notation \(o(\cdot )\) with Landau’s symbol, i.e. \( \phi (t) \in o(\psi (t)) \iff \limsup _{t \downarrow 0} \left| \frac{\varphi (t)}{\psi (t)} \right| =0 \) for functions \(\varphi , \psi : (0,\infty ) \mapsto {\mathbb {R}}\). Let \((a,b) \in D\) and take an increasing utility function \(f(x_1,x_2)=(x_1-a)+(x_2-b)\). Let \(R=[a,a+h] \times [b,b+k] \in \mathcal{R}(D)\) with \(h>0\) and \(k>0\), and let \(R(t)=[a,a+th] \times [b,b+tk] \subset R\) for \(t \in (0,1)\). From \(M^f_w(R(t)) \preceq M^f_v(R(t))\), we have
Hence, by Taylor’s theorem, there exists \(\theta \in [0,t]\) such that \( w(x_1,x_2) = w(a,b) + w_{x_1}(a+ \theta h, b+ \theta k) (x_1-a) + w_{x_2}(a+ \theta h, b+ \theta k) (x_2-b). \) Then regarding \(M^f_w(R(t))\) we have
We also have similar equation holds for \(M^f_v(R(t))\). Applying the equations to (A.1) and letting \(t \downarrow 0\), we get \( \frac{h^2w_{x_1}(a,b) +k^2w_{x_2}(a,b)}{w(a,b)} \le \frac{h^2v_{x_1}(a,b) +k^2v_{x_2}(a,b)}{v(a,b)} \) for all \((a,b) \in D\) and \(h>\) and \(k>0\). Thus we obtain \( \frac{w_{x_1}}{w} \le \frac{v_{x_1}}{v}\) and \(\frac{w_{x_2}}{w} \le \frac{v_{x_2}}{v} \) on D. (iii) In case of \(c(\cdot ,\cdot ) = 1\), \(w(x_1,x_2) = w_1(x_1) w_2(x_2)\) and \(v(x_1,x_2) = v_1(x_1) v_2(x_2)\) for \((x_1,x_2) \in D\). Therefore (b) and (c) are equivalent. In case of \(c(\cdot ,\cdot ) = 1\), (a) and (b) are equivalent from (ii) and the proof in Yoshida [11, Theorem 2.3]. \(\square \)
Proof of Theorem 3.3
(a) \(\Longrightarrow \) (b): From Theorem 3.1 we have \(X_1 \preceq _{\text{ FSD }}X_2\) and \(Y_1 \preceq _{\text{ FSD }}Y_2\), and then \(P(X_i \le x_i) \ge P(Y_i \le x_i)\) for \(x_i \in {\mathbb {R}}\) and \(i=1,2\). They imply \({\mathrm{VaR}}_p(X_i) \le {\mathrm{VaR}}_p(Y_i)\) for all \(p \in (0,1]\) and \(i=1,2\). Thus we get (b) by Lemma 2.2(i) since maps \(p_1 \mapsto C(p_1,p_2)\) and \(p_2 \mapsto C(p_1,p_2)\) are non-decreasing from (2.9). (b) \(\Longrightarrow \) (a): From (b) and (2.6), for any \((x_1,x_2) \in {\mathbb {R}}^2\) there exists \((y_1,y_2) \in {\mathbb {R}}^2\) such that \((x_1,x_2) \preceq (y_1,y_2)\) and \(P((X_1,X_2) \preceq (x_1,x_2) ) = p = P((Y_1,Y_2) \preceq (y_1,y_2) )\). Then \( P((X_1,X_2) \preceq (x_1,x_2) ) = P((Y_1,Y_2) \preceq (y_1,y_2) )\) \( \ge P((Y_1,Y_2) \preceq (x_1,x_2) ) \) and we get (a). The equivalence of (b) and (c) is trivial from (2.10). \(\square \)
Proof of Lemma 4.1
(i) is trivial from the definitions (2.1), (2.2), (3.1) and (3.2). (ii) can be checked easily from the definition (2.1). (iii) is also trivial from the definitions (3.1) and (3.2). (iv) From \(X \preceq _{\text{ SSD }}Y\) we have
for any \(x \in {\mathbb {R}}\). Let \(p \in (0,1]\). Let \(Z \in \mathcal{X}\) have a density function u. By the integration of parts, we have \( \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(Z)} P(Z \le z) \, dz = \frac{1}{p} \times {\mathrm{VaR}}_p(Z) P(Z \le {\mathrm{VaR}}_p(Z)) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(Z)} z u(z) \, dz = {\mathrm{VaR}}_p(Z) - {\mathrm{AVaR}}_p(Z). \) Thus we get
Put a function \( g(x) = x - \frac{1}{p} \int _{- \infty }^x P(Y \le z) \, dz \) for \(x \in {\mathbb {R}}\). Then \( g'(x) = 1 - \frac{ P(Y \le x)}{p} \gtreqless 0 \iff x \lesseqgtr {\mathrm{VaR}}_p(Y), \) and g(x) has a maximum at \(x ={\mathrm{VaR}}_p(Y)\). Together with (A.3) and (A.4) we get \( {\mathrm{AVaR}}_p(Y) = g({\mathrm{VaR}}_p(Y)) \ge g({\mathrm{VaR}}_p(X)) = {\mathrm{VaR}}_p(X) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(X)} P(Y \le z) \, dz \ge {\mathrm{VaR}}_p(X) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(X)} P(X \le z) \, dz = {\mathrm{AVaR}}_p(X). \) Therefore we have \(X \preceq _{\text{ AVaR }}Y\). \(\square \)
Proof of Theorem 4.1
(i) is trivial from the definitions (3.1) and (4.1). (ii) Let \(f_1 :{\mathbb {R}}\mapsto {\mathbb {R}}\) be a \(C^2\)-class strictly increasing concave function. Approximating a function \((x_1,x_2) (\in {\mathbb {R}}^2) \mapsto f_1(x_1)\) by concave functions \(f \in \mathcal{L}^2_c\), we get \(E(f_1(X_1)) \le E(f_1(Y_1))\) for all concave functions \(f_1:{\mathbb {R}}\mapsto {\mathbb {R}}\). In the same way, we also have \(E(f_2(X_2)) \le E(f_2(Y_2))\) for all concave functions \(f_2:{\mathbb {R}}\mapsto {\mathbb {R}}\). It is well-known that these inequalities are equivalent to \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\) (Levi [4]). (iii) From \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\), we have \(\int _{-\infty }^{x_1} P(X_1 \le z_1) \, dz_1 \ge \int _{-\infty }^{x_1} P((Y_1 \le z_1) \, dz_1 \ge 0\) and \(\int _{-\infty }^{x_2} P(X_2 \le z_2) \, dz_2 \ge \int _{-\infty }^{x_2} P((Y_2 \le z_2) \, dz_2 \ge 0\) for \( (x_1,x_2) \in {\mathbb {R}}^2\). Since \(c(\cdot ,\cdot ) = 1\), we get (2.4) and \((X_1,X_2) \preceq _{\text{ SSD }}(Y_1,Y_2)\) holds. \(\square \)
Proof of Theorem 4.2
(i)–(iii) are trivial from Lemma 2.2 and (2.13). (iv) By Lemma 4.1(iv), from \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\) we have \(X_1 \preceq _{\text{ AVaR }}Y_1\) and \(X_2 \preceq _{\text{ AVaR }}Y_2\). Thus we get (iii) together with (2.13). \(\square \)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yoshida, Y. (2020). Bivariate Risk Measures and Stochastic Orders. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-57524-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57523-6
Online ISBN: 978-3-030-57524-3
eBook Packages: Computer ScienceComputer Science (R0)