Skip to main content

Bivariate Risk Measures and Stochastic Orders

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12256))

  • 486 Accesses

Abstract

Bivariate value-at-risks and bivariate average value-at-risks are defined with copula functions, and stochastic orders are induced from these bivariate value-at-risks and bivariate average value-at-risks. Value-at-risk order is almost equivalent to the first-order stochastic dominance, however it is made clear that average value-at-risk order is weaker than the second-order stochastic dominance and it has similar properties. We find that average value-at-risk order is an important criterion as a stochastic order in multi-object case-based reasoning with risk aversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrow, K.J.: Essays in the Theory of Risk-Bearing. Markham, Chicago (1971)

    MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  3. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38, 555–593 (1992)

    Article  Google Scholar 

  5. Nelson, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/0-387-28678-0

    Book  Google Scholar 

  6. Pratt, J.W.: Risk aversion in the small and the large. Econometrica 32, 122–136 (1964)

    Article  Google Scholar 

  7. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007). https://doi.org/10.1007/978-0-387-34675-5

    Book  MATH  Google Scholar 

  8. Yoshida, Y.: Weighted quasi-arithmetic means and a risk index for stochastic environments. Int. J. Uncertain. Fuzziness Knowl. Based Syst. (IJUFKS) 16(suppl.), 1–16 (2011)

    MATH  Google Scholar 

  9. Yoshida, Y.: An ordered weighted average with a truncation weight on intervals. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 45–55. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_6

    Chapter  Google Scholar 

  10. Yoshida, Y.: Weighted quasi-arithmetic mean on two-dimensional regions and their applications. In: Torra, V., Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 42–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23240-9_4

    Chapter  Google Scholar 

  11. Yoshida, Y.: Weighted quasi-arithmetic means on two-dimensional regions: an independent case. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 82–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45656-0_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yoshida .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Lemma 2.1

(i) For \(x_1 = {\mathrm{VaR}}_{q_1}(X_1)\) and \(x_2 = {\mathrm{VaR}}_{q_2}(X_2)\), from (2.3) and (2.8) we have \( c(q_1,q_2) = \frac{\partial ^2}{\partial q_1 \partial q_2} P(X_1 \le x_1, X_2 \le x_2) = w(x_1, x_2) \frac{dx_1}{d q_1} \frac{dx_2}{d q_2}. \) Thus we get (i). (ii) Since \(P(X_1 \le x_1) = q_1\) and \(P(X_2 \le x_2) = q_2\), we get \( w_1(x_1) \, dx_1 = dq_1 \ \text{ and } \ w_2(x_2) \, dx_2 = dq_2. \) (iii) is trivial from (i) and (ii).    \(\square \)

Proof of Lemma 2.2

Let a random \((X_1,X_2) \in \mathcal{X}^2\) and a probability \(p \in (0,1]\). (i) From (2.4), (2.5) and (2.6), we have

$$\begin{aligned}&{{\mathrm{VaR}}_{p}(X_1,X_2)} \\&= \{ (x_1,x_2) \in {\mathbb {R}}^2 \mid P(X_1 \le x_1)=p_1, P(X_2 \le x_2 )=p_2, C(p_1, p_2) =p \} \\&= \{ ({\mathrm{VaR}}_{p_1}(X_1), {\mathrm{VaR}}_{p_2}(X_2)) \mid (p_1, p_2) \in \varGamma (p) \}. \end{aligned}$$

Thus we get (i). (ii) From (i), (2.7) and Lemma 2.1(i), we also have

$$\begin{aligned}&{{\mathrm{AVaR}}_{p}(X_1,X_2)} \\&= \{ E( (X_1,X_2) \mid (X_1,X_2) \preceq {\mathrm{VaR}}_{p}(X_1,X_2) ) \} \\&= \{ E( (X_1,X_2) \mid (X_1,X_2) \preceq ({\mathrm{VaR}}_{p_1}(X_1), {\mathrm{VaR}}_{p_2}(X_2))) \mid (p_1, p_2) \in \varGamma (p) \} \\&= \{ E((X_1,X_2) \mid X_1 \le {\mathrm{VaR}}_{p_1}(X_1), X_2 \le {\mathrm{VaR}}_{p_2}(X_2) ) \mid (p_1, p_2) \in \varGamma (p) \} \\&= \left\{ \frac{1}{p} \iiint _{(-\infty ,{{\mathrm{VaR}}_{p_1}(X_1)}] \times (-\infty ,{{\mathrm{VaR}}_{p_2}(X_2)}]} \! \! \! \! \! \! \! \! \! \! \! \! (x_1,x_2) \, w(x_1,x_2) \, dx_1 dx_2 \mid (p_1, p_2) \in \varGamma (p) \right\} \\&= \left\{ \frac{1}{p} \iint _{[0,p_1] \times [0,p_2]} \! \! \! \! \! \! \! \! \left( {\mathrm{VaR}}_{q_1}(X_1), {\mathrm{VaR}}_{q_2}(X_2) \right) c(q_1, q_2) \, dq_1 dq_2 \mid (p_1, p_2) \in \varGamma (p) \right\} . \end{aligned}$$

Therefore this lemma holds.    \(\square \)

Proof of Lemma 2.3

Value-at-risks (2.1) has similar properties (Artzner  [2]). Therefore from Lemma 2.2(i) we can easily check (i)–(iii).    \(\square \)

Proof of Lemma 2.4

Value-at-risks (2.2) has similar properties to (i)–(iii) [2]. From Lemma 2.2(ii), we can easily check (i)–(iii). (iv) It is well-known in one-dimensional case (2.2) that average value-at-risks has sub-additivity:

$$\begin{aligned} {\mathrm{AVaR}}_p(X+Y) \ge {\mathrm{AVaR}}_p(X) + {\mathrm{AVaR}}_p(Y) \end{aligned}$$
(A.1)

for all \(X,Y \in \mathcal{X}\) (Artzner  [2] and Yoshida  [9]). Let \((X_1,X_2), (Y_1,Y_2) \in \mathcal{X}^2\) and let \(p \in (0,1]\) and \((p_1, p_2) \in \varGamma (p)\). From (2.9) and (2.14), maps \( q_1 \mapsto \frac{\partial }{\partial q_1} C(q_1,p_2) = \int _{0}^{p_2} \! \! c(q_1, q_2) \, dq_2 \ \text{ and } \ q_2 \mapsto \frac{\partial }{\partial q_2} C(p_1, q_2) = \int _{0}^{p_1} \! \! c(q_1, q_2) \, dq_1 \) are non-increasing. When we approximate these nonnegative-valued functions by sums of non-increasing step functions on (0, 1], \(q \mapsto \gamma 1_{[0,\delta ]}(q) \, (\gamma >0, \, \delta \in (0,1] )\), from (A.1) we can check

$$\begin{aligned}&{ \frac{1}{p} \iint _{[0,p_1] \times [0,p_2]} \! \! \! \! \! \! \! \! \left( {\mathrm{VaR}}_{q_1}(X_1 + Y_1), {\mathrm{VaR}}_{q_2}(X_2 + Y_2) \right) c(q_1, q_2) \, dq_1 dq_2} \\&\;\; \succeq \frac{1}{p}\iint _{[0,p_1] \times [0,p_2]} \! \! \! \! \! \! \! \! \left( {\mathrm{VaR}}_{q_1}(X_1), {\mathrm{VaR}}_{q_2}(X_2) \right) c(q_1, q_2) \, dq_1 dq_2 \\&\quad \;\; +\, \frac{1}{p} \iint _{[0,p_1] \times [0,p_2]} \! \! \! \! \! \! \! \! \left( {\mathrm{VaR}}_{q_1}(Y_1), {\mathrm{VaR}}_{q_2}(Y_2) \right) c(q_1, q_2) \, dq_1 dq_2. \end{aligned}$$

Therefore we obtain (i) from Lemma 2.2(ii), and this lemma holds.    \(\square \)

Proof of Theorem 3.1

(a) \(\Longrightarrow \) (b) is trivial when we let \(x_1 \rightarrow \infty \) or \(x_2 \rightarrow \infty \) in Definition 3.1. (b) \(\Longrightarrow \) (a): From (2.9), maps \(p_1 \mapsto C(p_1,p_2)\) and \(p_2 \mapsto C(p_1,p_2)\) are non-decreasing. And we get (a) from (b) with (2.4). (a) \(\Longrightarrow \) (c): Let \(f \in \mathcal{L}^2\). We can approximate decreasing function \(- f\) by sums of step functions \(\gamma 1_{(-\infty , x_1] \times (-\infty ,x_2]}\) (\(\gamma >0\)) and we get (c) from (3.3). (c) \(\Longrightarrow \) (a): We can easily check (a) when we approximate step functions \(1_{(-\infty , x_1] \times (-\infty ,x_2]}\) by decreasing functions \(- f\) with \(f \in \mathcal{L}^2\).    \(\square \)

Proof of Theorem 3.2

(i) Letting \(R \uparrow D\) in \(M_w^f(R) \preceq M_v^f(R)\), we get \( E(f(X_1,X_2)) \le E(f(Y_1,Y_2)). \) (ii) For simplicity, we use small order notation \(o(\cdot )\) with Landau’s symbol, i.e. \( \phi (t) \in o(\psi (t)) \iff \limsup _{t \downarrow 0} \left| \frac{\varphi (t)}{\psi (t)} \right| =0 \) for functions \(\varphi , \psi : (0,\infty ) \mapsto {\mathbb {R}}\). Let \((a,b) \in D\) and take an increasing utility function \(f(x_1,x_2)=(x_1-a)+(x_2-b)\). Let \(R=[a,a+h] \times [b,b+k] \in \mathcal{R}(D)\) with \(h>0\) and \(k>0\), and let \(R(t)=[a,a+th] \times [b,b+tk] \subset R\) for \(t \in (0,1)\). From \(M^f_w(R(t)) \preceq M^f_v(R(t))\), we have

$$\begin{aligned} \frac{\iint _{R(t)} f(x_1,x_2) w(x_1,x_2) \, dx_1 dx_2}{\iint _{R(t)} w(x_1,x_2) \, dx_1 dx_2} \le \frac{\iint _{R(t)} f(x_1,x_2) v(x_1,x_2) \, dx_1 dx_2}{\iint _{R(t)} v(x_1,x_2) \, dx_1 dx_2}. \end{aligned}$$
(A.2)

Hence, by Taylor’s theorem, there exists \(\theta \in [0,t]\) such that \( w(x_1,x_2) = w(a,b) + w_{x_1}(a+ \theta h, b+ \theta k) (x_1-a) + w_{x_2}(a+ \theta h, b+ \theta k) (x_2-b). \) Then regarding \(M^f_w(R(t))\) we have

$$\begin{aligned}&{\iint _{R(t)} f(x_1,x_2) w(x_1,x_2) \, dx_1 dx_2 - \frac{(h+k)t}{2} \iint _{R(t)} w(x_1,x_2) \, dx_1 dx_2 } \\&= \frac{h^2k^2t^4}{4} (w_{x_1}(a,b) + w_{x_2}(a,b) ) + \frac{hkt^4}{3} (h^2w_{x_1}(a,b) +k^2w_{x_2}(a,b)) \\&\quad - \frac{(h+k)hkt^4}{4} (h w_{x_1}(a,b) +k w_{x_2}(a,b)) + o(t^4). \end{aligned}$$

We also have similar equation holds for \(M^f_v(R(t))\). Applying the equations to (A.1) and letting \(t \downarrow 0\), we get \( \frac{h^2w_{x_1}(a,b) +k^2w_{x_2}(a,b)}{w(a,b)} \le \frac{h^2v_{x_1}(a,b) +k^2v_{x_2}(a,b)}{v(a,b)} \) for all \((a,b) \in D\) and \(h>\) and \(k>0\). Thus we obtain \( \frac{w_{x_1}}{w} \le \frac{v_{x_1}}{v}\) and \(\frac{w_{x_2}}{w} \le \frac{v_{x_2}}{v} \) on D. (iii) In case of \(c(\cdot ,\cdot ) = 1\), \(w(x_1,x_2) = w_1(x_1) w_2(x_2)\) and \(v(x_1,x_2) = v_1(x_1) v_2(x_2)\) for \((x_1,x_2) \in D\). Therefore (b) and (c) are equivalent. In case of \(c(\cdot ,\cdot ) = 1\), (a) and (b) are equivalent from (ii) and the proof in Yoshida  [11, Theorem 2.3].    \(\square \)

Proof of Theorem 3.3

(a) \(\Longrightarrow \) (b): From Theorem 3.1 we have \(X_1 \preceq _{\text{ FSD }}X_2\) and \(Y_1 \preceq _{\text{ FSD }}Y_2\), and then \(P(X_i \le x_i) \ge P(Y_i \le x_i)\) for \(x_i \in {\mathbb {R}}\) and \(i=1,2\). They imply \({\mathrm{VaR}}_p(X_i) \le {\mathrm{VaR}}_p(Y_i)\) for all \(p \in (0,1]\) and \(i=1,2\). Thus we get (b) by Lemma 2.2(i) since maps \(p_1 \mapsto C(p_1,p_2)\) and \(p_2 \mapsto C(p_1,p_2)\) are non-decreasing from (2.9). (b) \(\Longrightarrow \) (a): From (b) and (2.6), for any \((x_1,x_2) \in {\mathbb {R}}^2\) there exists \((y_1,y_2) \in {\mathbb {R}}^2\) such that \((x_1,x_2) \preceq (y_1,y_2)\) and \(P((X_1,X_2) \preceq (x_1,x_2) ) = p = P((Y_1,Y_2) \preceq (y_1,y_2) )\). Then \( P((X_1,X_2) \preceq (x_1,x_2) ) = P((Y_1,Y_2) \preceq (y_1,y_2) )\) \( \ge P((Y_1,Y_2) \preceq (x_1,x_2) ) \) and we get (a). The equivalence of (b) and (c) is trivial from (2.10).    \(\square \)

Proof of Lemma 4.1

(i) is trivial from the definitions (2.1), (2.2), (3.1) and (3.2). (ii) can be checked easily from the definition (2.1). (iii) is also trivial from the definitions (3.1) and (3.2). (iv) From \(X \preceq _{\text{ SSD }}Y\) we have

$$\begin{aligned} \int _{-\infty }^x P(X \le z) \, dz \ge \int _{-\infty }^x P(Y \le z) \, dz \end{aligned}$$
(A.3)

for any \(x \in {\mathbb {R}}\). Let \(p \in (0,1]\). Let \(Z \in \mathcal{X}\) have a density function u. By the integration of parts, we have \( \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(Z)} P(Z \le z) \, dz = \frac{1}{p} \times {\mathrm{VaR}}_p(Z) P(Z \le {\mathrm{VaR}}_p(Z)) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(Z)} z u(z) \, dz = {\mathrm{VaR}}_p(Z) - {\mathrm{AVaR}}_p(Z). \) Thus we get

$$\begin{aligned} {\mathrm{AVaR}}_p(Z) = {\mathrm{VaR}}_p(Z) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(Z)} P(Z \le z) \, dz \quad \text{ for } \text{ all } \ Z \in \mathcal{X}. \end{aligned}$$
(A.4)

Put a function \( g(x) = x - \frac{1}{p} \int _{- \infty }^x P(Y \le z) \, dz \) for \(x \in {\mathbb {R}}\). Then \( g'(x) = 1 - \frac{ P(Y \le x)}{p} \gtreqless 0 \iff x \lesseqgtr {\mathrm{VaR}}_p(Y), \) and g(x) has a maximum at \(x ={\mathrm{VaR}}_p(Y)\). Together with (A.3) and (A.4) we get \( {\mathrm{AVaR}}_p(Y) = g({\mathrm{VaR}}_p(Y)) \ge g({\mathrm{VaR}}_p(X)) = {\mathrm{VaR}}_p(X) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(X)} P(Y \le z) \, dz \ge {\mathrm{VaR}}_p(X) - \frac{1}{p} \int _{- \infty }^{{{\mathrm{VaR}}}_p(X)} P(X \le z) \, dz = {\mathrm{AVaR}}_p(X). \) Therefore we have \(X \preceq _{\text{ AVaR }}Y\).    \(\square \)

Proof of Theorem 4.1

(i) is trivial from the definitions (3.1) and (4.1). (ii) Let \(f_1 :{\mathbb {R}}\mapsto {\mathbb {R}}\) be a \(C^2\)-class strictly increasing concave function. Approximating a function \((x_1,x_2) (\in {\mathbb {R}}^2) \mapsto f_1(x_1)\) by concave functions \(f \in \mathcal{L}^2_c\), we get \(E(f_1(X_1)) \le E(f_1(Y_1))\) for all concave functions \(f_1:{\mathbb {R}}\mapsto {\mathbb {R}}\). In the same way, we also have \(E(f_2(X_2)) \le E(f_2(Y_2))\) for all concave functions \(f_2:{\mathbb {R}}\mapsto {\mathbb {R}}\). It is well-known that these inequalities are equivalent to \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\) (Levi  [4]). (iii) From \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\), we have \(\int _{-\infty }^{x_1} P(X_1 \le z_1) \, dz_1 \ge \int _{-\infty }^{x_1} P((Y_1 \le z_1) \, dz_1 \ge 0\) and \(\int _{-\infty }^{x_2} P(X_2 \le z_2) \, dz_2 \ge \int _{-\infty }^{x_2} P((Y_2 \le z_2) \, dz_2 \ge 0\) for \( (x_1,x_2) \in {\mathbb {R}}^2\). Since \(c(\cdot ,\cdot ) = 1\), we get (2.4) and \((X_1,X_2) \preceq _{\text{ SSD }}(Y_1,Y_2)\) holds.    \(\square \)

Proof of Theorem 4.2

(i)–(iii) are trivial from Lemma 2.2 and (2.13). (iv) By Lemma 4.1(iv), from \(X_1 \preceq _{\text{ SSD }}Y_1\) and \(X_2 \preceq _{\text{ SSD }}Y_2\) we have \(X_1 \preceq _{\text{ AVaR }}Y_1\) and \(X_2 \preceq _{\text{ AVaR }}Y_2\). Thus we get (iii) together with (2.13).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, Y. (2020). Bivariate Risk Measures and Stochastic Orders. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57524-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57523-6

  • Online ISBN: 978-3-030-57524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics