Skip to main content

Stochastic Orders on Two-Dimensional Space: Application to Cross Entropy

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12256))

Abstract

We present in this paper the extension to 2d probability mass functions (PMFs) of the first and likelihood-ratio stochastic orders for 1d PMFs. We show that first stochastic order ensures Kolmogorov mean order invariance. We also review the concept of comonotonic sequences and show its direct relationship with likelihood-ratio order. We give some application examples related to frequency histograms and cross entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007). https://doi.org/10.1007/978-0-387-34675-5

    Book  MATH  Google Scholar 

  2. Belzunce, F., Martinez-Riquelme, C., Mulero, J.: An Introduction to Stochastic Orders. Academic Press, Elsevier (2016)

    MATH  Google Scholar 

  3. Hadar, J., Russell, W.: Rules for ordering uncertain prospects. Am. Econ. Rev. 59(1), 25–34 (1969)

    Google Scholar 

  4. Sbert, M., Havran, V., Szirmay-Kalos, L., Elvira, V.: Multiple importance sampling characterization by weighted mean invariance. Vis. Comput. 34, 843–852 (2018). https://doi.org/10.1007/s00371-018-1522-x

    Article  Google Scholar 

  5. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  6. Sbert, M., Poch, J., Chen, M., Bardera, A.: Some order preserving inequalities for cross entropy and Kullback-Leibler divergence. Entropy 20(959), 1–10 (2018)

    MathSciNet  Google Scholar 

  7. Sbert, M., Poch, J.: A necessary and sufficient condition for the inequality of generalized weighted means. J. Inequalities Appl. 2016(2), 292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yoshida, Y.: Weighted quasi-arithmetic means on two-dimensional regions: an independent case. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 82–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45656-0_7

    Chapter  Google Scholar 

  9. Renneberg, D.: Non Additive Measure and Integral. Kluwer Academic Publ., Dordrecht (1994)

    Book  Google Scholar 

  10. Dellacherie, C.: Quelques commentarires sur les prolongements de capacités, Séminare de Probabilites 1969/1970, Strasbourg. In: LNAI, vol. 191, pp. 77–81. Springer (1971)

    Google Scholar 

  11. Yoshida, Y.: Weighted quasi-arithmetic means and a risk index for stochastic environments. Int. J. Uncertain. Fuzziness Knowl. Based Syst. (IJUFKS) 16(suppl.), 1–16 (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

M.S. has been funded by grant TIN2016-75866-C3-3-R from Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateu Sbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sbert, M., Yoshida, Y. (2020). Stochastic Orders on Two-Dimensional Space: Application to Cross Entropy. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57524-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57523-6

  • Online ISBN: 978-3-030-57524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics