Abstract
We study the spherical k-means problem with outliers, a variant of the classical k-means problem, in which data points are on the unit sphere and a small set of points called outliers (as a constraint, the number of outliers can not be greater than a given integer) can be ignored. Using local search method, we give a constant-factor approximation algorithm that may violate slightly the constraint about the number of outliers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of FOCS, pp. 61–72 (2017)
Arthur, D., Vassilvitskii, S.: \(K\)-means++: the advantages of careful seeding. In: Proceedings of SODA, pp. 1027–1035 (2007)
Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of SODA, pp. 642–651 (2001)
Chen, K.: A constant factor approximation algorithm for \(k\)-median clustering with outliers. In: Proceedings of SODA, pp. 826–835 (2008)
Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001)
Endo, Y., Miyamoto, S.: Spherical k-Means++ clustering. In: Torra, V., Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 103–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23240-9_9
Friggstad, Z., Khodamoradi, K., Rezapour, M., Salavatipour, M.: Approximation schemes for clustering with outliers. ACM Trans. Algorithms 15(2), 26 (2019)
Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods for \(k\)-means with outliers. Proc. VLDB Endow. 10(7), 757–768 (2017)
Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical \(k\)-means clustering. J. Stat. Softw. 50(10), 1–22 (2012)
Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48, 274–296 (2001)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom.: Theory Appl. 28, 89–112 (2004)
Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical \(k\)-means clustering. J. Glob. Optim. 76, 695–708 (2020)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)
Zhang, D., Cheng, Y., Li, M., Wang, Y., Xu, D.: Approximation algorithms for spherical \(k\)-means problem using local search scheme. Theoret. Comput. Sci. https://doi.org/10.1016/j.tcs.2020.06.029
Acknowledgements
The second author is supported by National Natural Science Foundation of China (No. 11971349). The third author is supported by National Natural Science Foundation of China (No. 11871081). The fourth author is supported by National Natural Science Foundation of China (No. 11801310).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Wu, C., Zhang, D., Zou, J. (2020). Local Search Algorithm for the Spherical k-Means Problem with Outliers. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-57602-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57601-1
Online ISBN: 978-3-030-57602-8
eBook Packages: Computer ScienceComputer Science (R0)