Skip to main content

Simultaneous Road Edge and Road Surface Markings Detection Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Databases and Information Systems (DB&IS 2020)

Abstract

Accurate road surface markings and road edges detection is a crucial task for operating self-driving cars and for advanced driver assistance systems deployment (e.g. lane detection) in general. This research proposes an original neural network based method that combines structural components of autoencoders, residual neural networks and densely connected neural networks. The resulting neural network is able to concurrently detect and segment accurate road edges and road surface markings from RGB images of road surfaces.

This study was partially supported by the Archimedes Foundation and Reach-U Ltd. in the scope of the smart specialization research and development project #LEP19022: “Applied research for creating a cost-effective interchangeable 3D spatial data infrastructure with survey-grade accuracy”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álvarez, J.M., López, A.M., Gevers, T., Lumbreras, F.: Combining priors, appearance, and context for road detection. IEEE Trans. Intell. Transp. Syst. 15(3), 1168–1178 (2014). https://doi.org/10.1109/TITS.2013.2295427

    Article  Google Scholar 

  2. De Paula, M.B., Jung, C.R.: Automatic detection and classification of road lane markings using onboard vehicular cameras. IEEE Trans. Intell. Transp. Syst. 16(6), 3160–3169 (2015). https://doi.org/10.1109/TITS.2015.2438714

    Article  Google Scholar 

  3. Deng, L., Yang, M., Hu, B., Li, T., Li, H., Wang, C.: Semantic segmentation-based lane-level localization using around view monitoring system. IEEE Sens. J. 19(21), 10077–10086 (2019). https://doi.org/10.1109/JSEN.2019.2929135

    Article  Google Scholar 

  4. Gupta, A., Choudhary, A.: A framework for camera-based real-time lane and road surface marking detection and recognition. IEEE Trans. Intell. Veh. 3(4), 476–485 (2018). https://doi.org/10.1109/tiv.2018.2873902

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  6. Hoang, T.M., Nam, S.H., Park, K.R.: Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning. IEEE Access 7, 109817–109832 (2019). https://doi.org/10.1109/access.2019.2933598

    Article  Google Scholar 

  7. Hu, J., Yang, M., Xu, H., He, Y., Wang, C.: Mapping and localization using semantic road marking with centimeter-level accuracy in indoor parking lots. In: 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, pp. 4068–4073. Institute of Electrical and Electronics Engineers Inc. (October 2019). https://doi.org/10.1109/ITSC.2019.8917529

  8. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2016)

    Google Scholar 

  9. Jiang, W., Wu, Y., Guan, L., Zhao, J.: DFNet: semantic segmentation on panoramic images with dynamic loss weights and residual fusion block. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019, pp. 5887–5892. Institute of Electrical and Electronics Engineers Inc. (May 2019). https://doi.org/10.1109/ICRA.2019.8794476

  10. Kim, Z.W.: Robust lane detection and tracking in challenging scenarios (2008). https://doi.org/10.1109/TITS.2007.908582

  11. Lin, J., Chien, S., Chen, Y., Chen, C.C., Sherony, R.: 24 GHz and 77 GHz radar characteristics of metal guardrail for the development of metal guardrail surrogate for road departure mitigation system testing. In: 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, pp. 3340–3346. Institute of Electrical and Electronics Engineers Inc. (October 2019). https://doi.org/10.1109/ITSC.2019.8916960

  12. Ma, L., Li, Y., Li, J., Zhong, Z., Chapman, M.A.: Generation of horizontally curved driving lines in HD maps using mobile laser scanning point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(5), 1572–1586 (2019). https://doi.org/10.1109/JSTARS.2019.2904514

    Article  Google Scholar 

  13. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  15. Ozgunalp, U., Fan, R., Ai, X., Dahnoun, N.: Multiple lane detection algorithm based on novel dense vanishing point estimation. IEEE Trans. Intell. Transp. Syst. 18(3), 621–632 (2017). https://doi.org/10.1109/TITS.2016.2586187

    Article  Google Scholar 

  16. Reach-U Ltd.: Eyevi – mobile mapping based visual intelligence. https://www.reach-u.com/eyevi.html. Accessed 12 Feb 2020

  17. Riid, A., Lõuk, R., Pihlak, R., Tepljakov, A., Vassiljeva, K.: Pavement distress detection with deep learning using the orthoframes acquired by a mobile mapping system. Appl. Sci. 9(22), 4829 (2019)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. ArXiv (May 2015)

    Google Scholar 

  19. Rose, C., Britt, J., Allen, J., Bevly, D.: An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS. IEEE Trans. Intell. Transp. Syst. 15(6), 2615–2629 (2014). https://doi.org/10.1109/TITS.2014.2321108

    Article  Google Scholar 

  20. Suleymanov, T., Kunze, L., Newman, P.: Online inference and detection of curbs in partially occluded scenes with sparse LIDAR. In: 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, pp. 2693–2700. Institute of Electrical and Electronics Engineers Inc. (October 2019). https://doi.org/10.1109/ITSC.2019.8917086

  21. Tran, L.A., Le, M.H.: robust U-Net-based road lane markings detection for autonomous driving. In: Proceedings of 2019 International Conference on System Science and Engineering, ICSSE 2019, pp. 62–66. Institute of Electrical and Electronics Engineers Inc. (July 2019). https://doi.org/10.1109/ICSSE.2019.8823532

  22. Uzer, F., Benmokhtar, R., Moujtahid, S., Perrotton, X.: Dempster shafer grid-based hybrid fusion of virtual lanes for autonomous driving. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3760–3765. IEEE (November 2019). https://doi.org/10.1109/IROS40897.2019.8967610, https://ieeexplore.ieee.org/document/8967610/

  23. Wen, C., Sun, X., Li, J., Wang, C., Guo, Y., Habib, A.: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 147, 178–192 (2019). https://doi.org/10.1016/j.isprsjprs.2018.10.007

    Article  Google Scholar 

  24. Yu, Y., Li, J., Guan, H., Jia, F., Wang, C.: Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 709–726 (2015). https://doi.org/10.1109/JSTARS.2014.2347276

    Article  Google Scholar 

  25. Yuan, C., Chen, H., Liu, J., Zhu, D., Xu, Y.: Robust lane detection for complicated road environment based on normal map. IEEE Access 6, 49679–49689 (2018). https://doi.org/10.1109/ACCESS.2018.2868976

    Article  Google Scholar 

  26. Zhang, F., Wu, X., Gu, C.: Detection of road surface identifiers based on deep learning. In: 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp. 66–70. Institute of Electrical and Electronics Engineers (IEEE) (January 2020). https://doi.org/10.1109/aiam48774.2019.00020

  27. Zhang, W., Mi, Z., Zheng, Y., Gao, Q., Li, W.: Road marking segmentation based on siamese attention module and maximum stable external region. IEEE Access 7, 143710–143720 (2019). https://doi.org/10.1109/ACCESS.2019.2944993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Pihlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pihlak, R., Riid, A. (2020). Simultaneous Road Edge and Road Surface Markings Detection Using Convolutional Neural Networks. In: Robal, T., Haav, HM., Penjam, J., Matulevičius, R. (eds) Databases and Information Systems. DB&IS 2020. Communications in Computer and Information Science, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-57672-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57672-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57671-4

  • Online ISBN: 978-3-030-57672-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics