Abstract
We present a grapevine variety recognition system based on a densely connected convolutional network. The proposed solution is aimed as a data processing part of an affordable sensor for selective harvesters. The system classifies size normalized RGB images according to varieties of grapes captured in the images. We train and evaluate the system on in-field images of ripe grapes captured without any artificial lighting, in a direction of sunshine likewise in the opposite direction. A dataset created for this purpose consists of 7200 images classified into 8 categories. The system distinguishes among seven grapevine varieties and background, where four and three varieties have red and green grapes, respectively. Its average per-class classification accuracy is at 98.10% and 97.47% for red and green grapes, respectively. The system also well differentiates grapes from background. Its overall average per-class accuracy is over 98%. The evaluation results show that conventional cameras in combination with the proposed system allow construction of affordable automatic selective harvesters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bac, C.W., Hemming, J., van Tuijl, B., Barth, R., Wais, E., van Henten, E.J.: Performance evaluation of a harvesting robot for sweet pepper. J. Field Robot. 34(6), 1123–1139 (2017). https://doi.org/10.1002/rob.21709. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709
Bontsema, J., Hemming, J., Pekkeriet, E., Saeys, W., Edan, Y., Shapiro, A., Hočevar, M., Oberti, R., Armada, M., Ulbrich, H., Baur, J., Debilde, B., Best, S., Evain, S., Gauchel, W., Hellström, T., Ringdahl, O.: CROPS: clever robots for crops. Eng. Technol. Ref. 1(1) (2015). https://doi.org/10.1049/etr.2015.0015
Fernandes, A., Utkin, A., Eiras-Dias, J., Silvestre, J., Cunha, J., Melo-Pinto, P.: Assessment of grapevine variety discrimination using stem hyperspectral data and adaboost of random weight neural networks. Appl. Soft Comput. 72, 140–155 (2018). https://doi.org/10.1016/j.asoc.2018.07.059
Galet, P.: A Practical Ampelography: Grapevine Identification, 1st edn. Comstock Pub. Associates, Ithaca (1979)
Gutiérrez, S., Tardaguila, J., Fernández-Novales, J., Diago, M.: Data mining and NIR spectroscopy in viticulture: applications for plant phenotyping under field conditions. Sensors (Switzerland) 16(2) (2016). https://doi.org/10.3390/s16020236
Gutiérrez, S., Fernández-Novales, J., Diago, M.P., Tardaguila, J.: On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties. Front. Plant Sci. 9, 1102 (2018). https://doi.org/10.3389/fpls.2018.01102
Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6307–6315, July 2017. https://doi.org/10.1109/CVPR.2017.668
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, July 2017. https://doi.org/10.1109/CVPR.2017.243
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Lemnaru, C., Potolea, R.: Imbalanced classification problems: systematic study, issues and best practices. In: Enterprise Information Systems, pp. 35–50. Springer, Heidelberg (2012)
Maul, et al.: Vitis international variety catalogue (2020). www.vivc.de
Pelsy, F., Hocquigny, S., Moncada, X., Barbeau, G., Forget, D., Hinrichsen, P., Merdinoglu, D.: An extensive study of the genetic diversity within seven French wine grape variety collections. Theor. Appl. Genet. 120(6), 1219–1231 (2010). https://doi.org/10.1007/s00122-009-1250-8
Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
Slaughter, D., Giles, D., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61(1), 63–78 (2008). https://doi.org/10.1016/j.compag.2007.05.008
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009). https://doi.org/10.1016/j.ipm.2009.03.002
Soldavini, C., Schneider, A., Stefanini, M., Dallaserra, M., Policarpo, M.: Super ampelo, a software for ampelometric and ampelographic descriptions in vitis. Acta Horticulturae 827, 253–258 (2009). https://doi.org/10.17660/ActaHortic.2009.827.43
de Soto, M.G., Emmi, L., Perez-Ruiz, M., Aguera, J., de Santos, P.G.: Autonomous systems for precise spraying - evaluation of a robotised patch sprayer. Biosyst. Eng. 146, 165–182 (2016). https://doi.org/10.1016/j.biosystemseng.2015.12.018
Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2015, pp. 2377–2385. MIT Press, Cambridge (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, June 2016. https://doi.org/10.1109/CVPR.2016.308
Xiong, Y., Peng, C., Grimstad, L., From, P.J., Isler, V.: Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agr. 157, 392–402 (2019). https://doi.org/10.1016/j.compag.2019.01.009. http://www.sciencedirect.com/science/article/pii/S0168169918312456
Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., Chang, E.I.: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 947–951, April 2015. https://doi.org/10.1109/ICASSP.2015.7178109
Yu, Z., Li, T., Luo, G., Fujita, H., Yu, N., Pan, Y.: Convolutional networks with cross-layer neurons for image recognition. Inf. Sci. 433–434, 241–254 (2018). https://doi.org/10.1016/j.ins.2017.12.045
Acknowledgments
The work was supported from ERDF/ESF “Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)” (No. CZ.02.1.01/0.0/0.0/17_049/0008394).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Škrabánek, P., Doležel, P., Matoušek, R., Junek, P. (2021). RGB Images Driven Recognition of Grapevine Varieties. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-57802-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57801-5
Online ISBN: 978-3-030-57802-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)