Skip to main content

Abstract

An analysis over trajectory segmentation techniques is carried out by the study of the different algorithms and the experimentation over a ship classification problem, which use a data preparation and classification system used in previous works. With the data preparation, the system handles real-world Automatic Identification System (AIS) data, cleaning wrong measurements and smoothening the trajectories by the application of an Interacting Multiple Model (IMM) filter. Also applies some balancing algorithms to address the lack of an equal distribution among classes. To correctly evaluate the classification with the imbalanced data a multiple objective analysis is proposed to consider the minority class and the global accuracy. Over that multi-objective analysis, different segmentation algorithms and its variations are tested to analyze the influence of them into the classification problem. The results show a Pareto front with different viable solutions for the proposed multi-objective problem, without a dominant algorithm over rest of the tested segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.B.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 19, 1559–1582 (2018). https://doi.org/10.1109/TITS.2017.2724551

    Article  Google Scholar 

  2. Amigo, D., Sánchez Pedroche, D., García, J., Molina, J.M.: AIS trajectory classification based on IMM data. In: 2019 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, pp. 1–8. IEEE (2019)

    Google Scholar 

  3. Sánchez Pedroche, D., Amigo, D., García, J., Molina, J.M.: Context information analysis from IMM filtered data classification. In: 1st Maritime Situational Awareness Workshop MSAW 2019, Lerici, Italy, p. 8 (2019)

    Google Scholar 

  4. Kraus, P., Mohrdieck, C., Schwenker, F.: Ship classification based on trajectory data with machine-learning methods. In: 2018 19th International Radar Symposium (IRS), Bonn, pp. 1–10. IEEE (2018)

    Google Scholar 

  5. Zhang, T., Zhao, S., Chen, J.: Research on ship classification based on trajectory association. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds.) Knowledge Science, Engineering and Management, pp. 327–340. Springer, Cham (2019)

    Chapter  Google Scholar 

  6. Ichimura, S., Zhao, Q.: Route-based ship classification. In: 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, pp. 1–6. IEEE (2019)

    Google Scholar 

  7. Sheng, K., Liu, Z., Zhou, D., He, A., Feng, C.: Research on ship classification based on trajectory features. J. Navig. 71, 100–116 (2018). https://doi.org/10.1017/S0373463317000546

    Article  Google Scholar 

  8. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6, 1–41 (2015). https://doi.org/10.1145/2743025

    Article  Google Scholar 

  9. Tobler, W.R.: Numerical map generalization. Michigan Inter-University Community of Mathematical Geographers (1966)

    Google Scholar 

  10. Meratnia, N., Rolf, A.: Spatiotemporal compression techniques for moving point objects. In: Lecture Notes in Computer Science (2004). https://doi.org/10.1007/978-3-540-24741-8

  11. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartogr. 10, 112–122 (1973). https://doi.org/10.3138/FM57-6770-U75U-7727

    Article  Google Scholar 

  12. Muckell, J., Olsen, P.W., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. Geoinformatica 18, 435–460 (2013). https://doi.org/10.1007/s10707-013-0184-0

    Article  Google Scholar 

  13. Chen, M., Xu, M., Franti, P.: A fast O(N) multiresolution polygonal approximation algorithm for GPS trajectory simplification. IEEE Trans. Image Process. 21, 2770–2785 (2012). https://doi.org/10.1109/TIP.2012.2186146

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, W., Li, Y.: DOTS: An online and near-optimal trajectory simplification algorithm. J. Syst. Softw. 126, 34–44 (2017). https://doi.org/10.1016/j.jss.2017.01.003

    Article  Google Scholar 

  15. Danish Maritime Authority: AIS Data. dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx

  16. Gosain, A., Sardana, S.: Handling class imbalance problem using oversampling techniques: a review. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, pp. 79–85. IEEE (2017)

    Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. jair 16, 321–357 (2002)

    Article  Google Scholar 

  18. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer International Publishing, Cham (2018)

    Book  Google Scholar 

Download references

Acknowledgement

This work was funded by public research projects of Spanish Ministry of Economy and Competitivity (MINECO), reference TEC2017-88048-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Amigo or David Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amigo, D., Sánchez, D., García, J., Molina, J.M. (2021). Segmentation Optimization in Trajectory-Based Ship Classification. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_52

Download citation

Publish with us

Policies and ethics