Abstract
Manufacturing processes require to satisfy quality standards in the produced parts. In particular, the edge finishing must be burr-free, avoiding that it yields different problems such as wasting time removing them what increases the production cost and time. A burr can be noticed microscopically, but it can contain imperfections or evidence of poor piece design. In order to detect automatically this imperfections and to evaluate the quality of the edge finishing, this paper proposes a complete vision based method using image processing and linear regression. With the calculated function, the slope is isolated and compared to obtain quality assessment thresholds. Results validate the good performance of the proposed method to differenciate three types of burrs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bu, Y., Liao, W.H., Tian, W., Shen, J.X., Hu, J.: An analytical model for exit burrs in drilling of aluminum materials. The International Journal of Advanced Manufacturing Technology 85(9–12), 2783–2796 (2016)
Castejón-Limas, M., Sánchez-González, L., Díez-González, J., Fernández-Robles, L., Riego, V., Pérez, H.: Texture descriptors for automatic estimation of workpiece quality in milling. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) Hybrid Artificial Intelligent Systems, pp. 734–744. Springer International Publishing, Cham (2019)
Chen, X., Shi, G., Xi, C., Zhong, L., Wei, X., Zhang, K.: Design of burr detection based on image processing. In: Journal of Physics: Conference Series. vol. 1237, p. 032075. IOP Publishing (2019)
Chern, G.L.: Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. International Journal of Machine Tools and Manufacture 46(12–13), 1517–1525 (2006)
Dornfeld, D., Min, S.: A review of burr formation in machining. In: Aurich, J.C., Dornfeld, D. (eds.) Burrs - Analysis, Control and Removal, pp. 3–11. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)
Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments–a review. The International Journal of Advanced Manufacturing Technology 107(5), 2189–2210 (mar 2020). https://doi.org/10.1007/s00170-020-05203-2
Lin, T.R.: Experimental study of burr formation and tool chipping in the face milling of stainless steel. Journal of Materials Processing Technology 108(1), 12–20 (2000)
Niknam, S.A., Songmene, V.: Milling burr formation, modeling and control: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229(6), 893–909 (2015)
Niknam, S.A., Tiabi, A., Zaghbani, I., Kamguem, R., Songmene, V.: Milling burr size estimation using acoustic emission and cutting forces. In: ASME 2011 International Mechanical Engineering Congress and Exposition. pp. 901–909. American Society of Mechanical Engineers Digital Collection (2011)
Park, G.H., Cho, H.H., Choi, M.R.: A contrast enhancement method using dynamic range separate histogram equalization. IEEE Transactions on Consumer Electronics 54(4), 1981–1987 (2008)
Póka, G., Mátyási, G., Németh, I.: Burr minimisation in face milling with optimised tool path. Procedia CIRP 57, 653–657 (2016). https://doi.org/10.1016/j.procir.2016.11.113, http://www.sciencedirect.com/science/article/pii/S2212827116312690, factories of the Future in the digital environment - Proceedings of the 49th CIRP Conference on Manufacturing Systems
Régnier, T., Fromentin, G., Marcon, B., Outeiro, J., D’Acunto, A., Crolet, A., Grunder, T.: Fundamental study of exit burr formation mechanisms during orthogonal cutting of alsi aluminium alloy. Journal of Materials Processing Technology 257, 112–122 (2018). https://doi.org/10.1016/j.jmatprotec.2018.02.037, http://www.sciencedirect.com/science/article/pii/S0924013618300931
Régnier, T., Marcon, B., Outeiro, J., Fromentin, G., D’Acunto, A., Crolet, A.: Investigations on exit burr formation mechanisms based on digital image correlation and numerical modeling. Machining Science and Technology 23(6), 925–950 (2019). https://doi.org/10.1080/10910344.2019.1636274
Sharan, R., Onwubolu, G.C.: Measurement of end-milling burr using image processing techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225(3), 448–452 (2011)
Silva, L., Mota, P., Bacci Da Silva, M., Ezugwu, E., Machado, A.: Study of burr height in face milling of ph 13-8 mo stainless steel–transition from primary to secondary burr and benefits of deburring between passes. CIRP Journal of Manufacturing Science and Technology 10 (06 2015). https://doi.org/10.1016/j.cirpj.2015.05.002
Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego, CA, USA (1994), http://dl.acm.org/citation.cfm?id=180895.180940
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
del Castillo, V.R., Sánchez-González, L., Fernández-Robles, L., Castejón-Limas, M. (2021). Burr Detection Using Image Processing in Milling Workpieces. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_72
Download citation
DOI: https://doi.org/10.1007/978-3-030-57802-2_72
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57801-5
Online ISBN: 978-3-030-57802-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)