Skip to main content

Detection of Artificial Images and Changes in Real Images Using Convolutional Neural Networks

  • Conference paper
  • First Online:
13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020) (CISIS 2019)

Abstract

Image recognition has now become one of the most popular methods used in the entertainment industry, media, automotive, etc. The possibilities provided by neural networks and deep learning algorithms, cause the development of various methods for generating, modifying and falsifying information. An example would be the use of deep learning algorithms to replace faces in a video recording. Social networks, video materials are full of fake video and images. Our work proposes a method of detecting forgery on real images and detecting artificially generated images using Convolutional Neural Networks (CNN). Our approach introduces the possibility of classifying images into one of three classes: the class of real images, the class of real and modified images, and the class of artificially generated images. An important element of our work is the practical detection of modified or artificially generated images that could be used when phishing biometrically protected data. The research has been narrowed down to the facial images of people of different skin colour, nationality and age. The conducted tests show the acceptable effectiveness of our method and become a positive element of further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and localization techniques: a review. Australian J. Foren. Sci. 49(3), 281–307 (2017)

    Article  Google Scholar 

  2. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)

    Google Scholar 

  3. Bobulski, J., Kubanek, M.: Cnn use for plastic garbage classification method. In: 25th ACM SIGKDD Conference on Knowledge Discovery and Mining (2019)

    Google Scholar 

  4. Chen, B., Li, H., Luo, W.: Image processing operations identification via convolutional neural network. Inf. Sci. 63(3), 02908 (2017)

    Google Scholar 

  5. Chen, C., Ni, J., Huang, J.: Blind detection of median filtering in digital images: a difference domain based approach. IEEE Trans. Image Process. 22(12), 4699–4710 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  7. Choras, M., Gielczyk, A., Demestichas, K.P., Puchalski, D., Kozik, R.: Pattern recognition solutions for fake news detection. In: Computer Information Systems and Industrial Management 2018, LNCS, vol. 11127, pp. 130–139 (2018)

    Google Scholar 

  8. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164. ACM (2017)

    Google Scholar 

  9. Deshpande, P.: Pixel based digital image forgery detection techniques. IJERA 2, 539–543 (2012)

    Google Scholar 

  10. Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and edge statistics based approach for image splicing detection. In: Digital Water-marking, IWDW 2008, LNCS, vol. 5450, pp. 76–87 (2008)

    Google Scholar 

  11. El-Alfy, E.S., Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal. Appl. 18, 713–723 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003)

    Google Scholar 

  13. Gelfert, A.: Fake news: a definition. Informal Logic, Special Issue Reason Rhetoric Time Alternat. Facts 38(1), 84–117 (2018)

    Google Scholar 

  14. Gua, J., Wangb, Z., Kuenb, J., Mab, L., Shahroudyb, A., Shuaib, B., Liub, T., Wangb, X., Wangb, L., Wangb, G., Caic, J., Chenc, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  15. Hsu, C., Zhuang, Y.X., Lee, C.Y.: Deep fake image detection based on pairwise learning. Appl. Sci. 10(1), 370 (2020)

    Article  Google Scholar 

  16. Huang, H., Ciou, A.: Copy-move forgery detection for image forensics using the super-pixel segmentation and the Helmert transformation. EURASIP J. Image Video Process. 68 (2019)

    Google Scholar 

  17. Huaxiao, M., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43–47. ACM (2018)

    Google Scholar 

  18. kaggle, January 2020. https://www.kaggle.com/ciplab/real-and-fake-face-detection. Accessed 07 Jan 2020

  19. Karras, T., Nvidia, January 2020. https://generated.photos/faces. Accessed 12 Jan 2020

  20. Ksieniewicz, P., Choras, M., Kozik, R., Wozniak, M.: Machine learning methods for fake news classification. In: Intelligent Data Engineering and Automated Learning - IDEAL 2019, LNCS, vol. 11872, pp. 332–339 (2019)

    Google Scholar 

  21. Kubanek, M., Bobulski, J., Kulawik, J.: A method of speech coding for speech recognition using a convolutional neural network. Symmetry 11(9), 1185 (2019)

    Article  Google Scholar 

  22. Lee, J.C., Chang, C.P., Chen, W.K.: Detection of copy-move image forgery using histogram of orientated gradients. Inf. Sci. 321, 250–262 (2015)

    Article  Google Scholar 

  23. Li, W., Yu, N.: Rotation robust detection of copy-move forgery. In: IEEE International Conference on Image Processing, pp. 2113–2116 (2010)

    Google Scholar 

  24. Lu, C., Liao, H.M., Member, S.: Structural digital signature for image authentication: an incidental distortion resistant scheme. IEEE Trans. Multimedia 5(2), 161–173 (2003)

    Article  Google Scholar 

  25. MathWorks, April 2020. https://www.mathworks.com/help/deeplearning. Accessed 26 Apr 2020

  26. Meena, K.B., Tyagi, V.: Image forgery detection: Survey and future directions. In: Data, Engineering and Applications (2019)

    Google Scholar 

  27. Ng, T., Chang, S., Sun, Q.: Blind detection of photomontage using higher order statistics. In: IEEE International Symposium on Circuits Systems, pp. 7–10 (2004)

    Google Scholar 

  28. Park, T.H., Han, J.G., Moon, Y.H., Eom, I.K.: Image splicing detection based on inter-scale 2d joint characteristics functions moments in wavelet domain. EURASIP J. Image Video Process. 30 (2016)

    Google Scholar 

  29. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics, vol. 9409 (2015)

    Google Scholar 

  30. Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localization of duplicated image regions based on zernike moments. IEEE Trans. Inf. Forensics Secur. 8(8), 1355–1370 (2013)

    Article  Google Scholar 

  31. Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of 9th Workshop Multimedia Security, pp. 51–62 (2007)

    Google Scholar 

  32. Singh, P., Chadha, R.S.: A survey of digital watermarking techniques, applications and attacks. Int. J. Eng. Innovat. Technol. 2(9), 165–175 (2013)

    Google Scholar 

  33. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 3119–3127 (2015)

    Google Scholar 

  34. Wikipedia, April 2020. https://en.wikipedia.org/wiki/Deepfake. Accessed 25 Apr 2020

  35. Zhao, X., Wang, S., Li, S., Li, J.: Passive image-splicing detection by a 2-d noncausal Markov model. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)

    Article  Google Scholar 

  36. Zhong-Qiu, Z., Peng, Z., Shou-tao, X., Xindong, W.: Object detection with deep learning: a review. IEEE Trans. Neural Networks Learn. Syst. 30, 3212–3232 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The project financed under the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19, the amount of financing 12,000,000 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Kubanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kubanek, M., Bartłomiejczyk, K., Bobulski, J. (2021). Detection of Artificial Images and Changes in Real Images Using Convolutional Neural Networks. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020). CISIS 2019. Advances in Intelligent Systems and Computing, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-57805-3_19

Download citation

Publish with us

Policies and ethics