Skip to main content

Abstract

In order to store information in a decentralized context and without the presence of a guarantor authority, it is necessary to replicate the information on multiple nodes. This is the underlying idea of the blockchain, that is generating increasing interest nowadays as one of the most-promising disruptive technologies. However, the ledger is accessible to all participants and if adequate precautions are not taken, this may lead to serious privacy issues. Present paper retraces the history of blockchain with particular attention to the evolution of privacy and anonymity concerns, starting from bitcoin. Furthermore, this work presents the most popular solutions to ensure privacy in the blockchain, as well as the main cryptocurrencies that have been proposed after bitcoin to overcome this problem. A critical survey is presented classifying the approaches in mixing protocols and knowledge limitation protocols. Open challenges and future directions of research in this field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, Y., Wang, F.: Blockchain and cryptocurrencies: model, techniques, and applications. IEEE Trans. Syst. Man Cybern.: Syst. 48, 1421–1428 (2018). https://doi.org/10.1109/TSMC.2018.2854904

    Article  Google Scholar 

  2. Minsky, N.: Decentralized governance of distributed systems via interaction control. In: Lecture Notes in Computer Science, pp. 374–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29414-3_20

  3. Antonopoulos, A.: Mastering Bitcoin: Programming the Open Blockchain, 2nd edn. O’Reilly Media, Inc., Boston (2017)

    Google Scholar 

  4. Chowdhury, M., Colman, A., Kabir, A., Han, J., Sarda, P.: Blockchain versus database: a critical analysis. In: 12th IEEE International Conference on Big Data Science and Engineering, pp. 1348–1353. IEEE, New York (2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00186

  5. Lange, M., Leiter, C., Alt, R.: Defining and delimitating distributed ledger technology: results of a structured literature analysis. In: Di Ciccio, C. (ed.) BPM 2019, pp. 43–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30429-4_4

    Chapter  Google Scholar 

  6. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol. 3, 99–111 (1991). https://doi.org/10.1007/BF00196791

    Article  MATH  Google Scholar 

  7. Bleumer, G.: Chaum blind signature scheme. In: van Tilborg, H.C.A. (ed.). Encyclopedia of Cryptography and Security, pp. 74–75. Springer, Boston (2005). https://doi.org/10.1007/0-387-23483-7_57

  8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) Advances in Cryptology – EUROCRYPT 2005, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

    Chapter  Google Scholar 

  9. Sander, T., Ta-Shma, A.: Auditable, anonymous electronic cash extended abstract. In: Advances in Cryptology—CRYPTO 1999, pp. 555–572. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_35

  10. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.08.020

    Article  Google Scholar 

  11. Stimolo, S.: 18 million mined bitcoins in total. Only 3 million remain (2019). https://en.cryptonomist.ch/2019/10/19/18-million-mined-bitcoins-in-total/. Accessed 20 Feb 2020

  12. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston (1983)

    Chapter  Google Scholar 

  13. Szabo, N.: Bit Gold. http://unenumerated.blogspot.com/2005/12/bit-gold.html. Accessed 20 Feb 2020

  14. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18, 2084–2123 (2016)

    Article  Google Scholar 

  15. Grinberg, R.: Bitcoin: an innovative alternative digital currency. Hastings Sci. Technol. Law J. 4(160), 160 (2011)

    Google Scholar 

  16. Pilkington, M.: Blockchain Technology: Principles and Applications. Edward Elgar (2016). https://doi.org/10.4337/9781784717766.00019

  17. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.: Elliptic curve cryptography in practice. In: International Conference on Financial Cryptography and Data Security, pp. 157–175. Springer (2014). https://doi.org/10.1007/978-3-662-45472-5_11

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Manubot (2019)

    Google Scholar 

  19. Karame, G., Androulaki, E., Capkun, S.: Double-spending fast payments in Bitcoin. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 906–917 (2012). https://doi.org/10.1145/2382196.2382292

  20. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the Bitcoin network. In: Financial Cryptography and Data Security, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29

  21. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—How to make Bitcoin a better currency. In: International Conference on Financial Cryptography and Data Security, pp. 399–414. Springer (2012). https://doi.org/10.1007/978-3-642-32946-3_29

  22. Halpin, H., Piekarska, M.: Introduction to security and privacy on the blockchain. In: 2017 EuroS&PW, Paris, pp. 1–3 (2017). https://doi.org/10.1109/EuroSPW.2017.43

  23. Karame, G., Androulaki, E., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in Bitcoin. In: International Conference on Financial Cryptography and Data Security. pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

  24. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.org/index.php?topic=279249. Accessed 22 Feb 2020

  25. Maurer, F., Neudecker, T., Florian, M.: Anonymous CoinJoin transactions with arbitrary values. In: Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 522–529. IEEE, Sydney (2017). https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.280

  26. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for Bitcoin. In: European Symposium on Research in Computer Security. Springer (2014). https://doi.org/10.1007/978-3-319-11212-1_20

  27. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin transactions. In: Network and Distributed System Security Symposium (NDSS) (2017). https://doi.org/10.14722/ndss.2017.23415

  28. Ruffing, T., Moreno-Sanchez, P.: ValueShuffle: mixing confidential transactions for comprehensive transaction privacy in Bitcoin. In: Financial Cryptography and Data Security, pp. 133–154 (2017). https://doi.org/10.1007/978-3-319-70278-0_8

  29. Ibrahim, M.: SecureCoin: a robust secure and efficient protocol for anonymous bitcoin ecosystem. Int. J. Netw. Secur. 19, 295–312 (2017). https://doi.org/10.6633/IJNS.201703.19(2).14

    Article  Google Scholar 

  30. Heilman, E., AlShenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted bitcoin-compatible anonymous payment hub. In: The Network and Distributed System Security Symposium (NDSS) (2017). https://doi.org/10.14722/ndss.2017.23086

  31. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from Bitcoin. In: Proceedings - IEEE Symposium on Security and Privacy, pp. 397–411 (2013). https://doi.org/10.1109/SP.2013.34

  32. Poramin, I.: ZCoin - Academic Papers. https://zcoin.io/tech/. Accessed 20 Feb 2020

  33. Ben-sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014). https://doi.org/10.1109/SP.2014.36

  34. Groth, J.: Short Pairing-based non-interactive zero-knowledge arguments. In: ASIACRYPT 2010, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

  35. Electric Coin Company: Zcash - Network Information. https://z.cash/upgrade/. Accessed 06 Feb 2020

  36. Electric Coin Company: Zcash - How It Works. https://z.cash/technology. Accessed 10 Jan 2020

  37. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash Protocol Specification. GitHub, San Francisco (2016)

    Google Scholar 

  38. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in Zcash. In: 27th USENIX Security Symposium. USENIX Association, Baltimore (2018)

    Google Scholar 

  39. Van Saberhagen, N.: CryptoNote v 2.0. Cryptonote 1 (2013)

    Google Scholar 

  40. Alonso, K.M.: koe: Zero to Monero: First Edition (2018). https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf

  41. Alonso, K.M., Herrera-Joancomartí, J.: Monero - privacy in the blockchain. IACR Cryptol. ePrint Arch. 2018, 535 (2018)

    Google Scholar 

  42. SerHack: Mastering Monero Book. https://github.com/monerobook/monerobook. Accessed 08 May 2020

  43. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An empirical analysis of traceability in the Monero Blockchain. In: Proceedings on Privacy Enhancing Technologies 2018, pp. 143–163 (2018). https://doi.org/10.1515/popets-2018-0025

  44. Chaum, D., Van Heyst, E.: Group signatures. In: Workshop on the Theory and Application of Cryptographic Techniques, pp. 257–265. Springer (1991)

    Google Scholar 

  45. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 552–565. Springer (2001). https://doi.org/10.1007/3-540-45682-1_32

  46. Noether, S., Mackenzie, A., Lab, T.: Ring confidential transactions. Ledger 1, 1–18 (2016). https://doi.org/10.5195/LEDGER.2016.34

    Article  Google Scholar 

  47. Astolfi, F., Kroese, J., Van Oorschot, J.: I2P-The Invisible Internet Project. Leiden University Web Technology Report (2015)

    Google Scholar 

  48. Marley, N.: Dash Whitepaper, 23 August 2018. https://github.com/dashpay/dash/wiki/Whitepaper. Accessed 20 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Herrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marciante, S., Herrero, Á. (2021). The Evolution of Privacy in the Blockchain: A Historical Survey. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020). CISIS 2019. Advances in Intelligent Systems and Computing, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-57805-3_3

Download citation

Publish with us

Policies and ethics