Skip to main content

Development of a Neural Network-Based Approach for Prediction of Potential HIV-1 Entry Inhibitors Using Deep Learning and Molecular Modeling Methods

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Abstract

A generative adversarial autoencoder for the rational design of potential HIV-1 entry inhibitors able to block the region of the viral envelope protein gp120 critical for the virus binding to cellular receptor CD4 was developed using deep learning methods. In doing so, the following studies were carried out: (i) the architecture of the neural network was constructed; (ii) a virtual compound library of potential anti-HIV-1 agents for training the neural network was formed; (iii) molecular docking of all compounds from this library with gp120 was made and calculations of the values of binding free energy were performed; (iv) molecular fingerprints for chemical compounds from the training dataset were generated; (v) training the neural network was implemented followed by estimation of the learning outcomes and work of the autoencoder. The validation of the neural network on a wide range of compounds from the ZINC database was carried out. The use of the neural network in combination with virtual screening of chemical databases was shown to form a productive platform for identifying the basic structures promising for the design of novel antiviral drugs that inhibit the early stages of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherkasov, A., et al.: QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014). https://doi.org/10.1021/jm4004285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ali, S.M., Hoemann, M.Z., Aubé, J., Georg, G.I., Mitscher, L.A., Jayasinghe, L.R.: Butitaxel analogues: synthesis and structure-activity relationships. J. Med. Chem. 40, 236–241 (1997). https://doi.org/10.1021/jm960505t

  3. Vamathevan, J., et al.: Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18(6), 463–477 (2019). https://doi.org/10.1038/s41573-019-0024-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kadurin, A., et al.: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 8, 10883–10890 (2017). https://doi.org/10.18632/oncotarget.14073

  5. Durrant, J.D., McCammon, J.A.: AutoClickChem: click chemistry in silico. PLoS Comput. Biol. 8, e1002397 (2012). https://doi.org/10.1371/journal.pcbi.1002397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sterling, T., Irwin, J.J.: ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015). https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sander, T., Freyss, J., von Korff, M., Rufener, C.: DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55, 460–473 (2015). https://doi.org/10.1021/ci500588j

    Article  CAS  PubMed  Google Scholar 

  8. Kwong, P.D., Wyatt, R., Robinson, J., Sweet, R.W., Sodroski, J., Hendrickson, W.A.: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998). https://doi.org/10.1038/31405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Curreli F., et al.: Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. J. Med. Chem. 58, 6909–6927 (2015). https://doi.org/10.1021/acs.jmedchem.5b00709

  10. Curreli, F., et al.: Synthesis, antiviral potency, in vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 cavity of HIV-1 gp120. J. Med. Chem. 60, 3124–3153 (2017). https://doi.org/10.1021/acs.jmedchem.7b00179

    Article  CAS  PubMed  Google Scholar 

  11. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001). PMID: 11259830

    Article  CAS  Google Scholar 

  12. Handoko, S.D., Ouyang, X., Su, C.T.T., Kwoh, C.K., Ong, Y.S.: QuickVina: accelerating autodock vina using gradient-based heuristics for global optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1266–1272 (2012). https://doi.org/10.1109/tcbb.2012.82

    Article  PubMed  Google Scholar 

  13. Myszka, D.G., et al.: Energetics of the HIV gp120-CD4 binding reaction. Proc. Natl. Acad. Sci. USA 97, 9026–9031 (2000). https://doi.org/10.1073/pnas.97.16.9026

  14. Durrant, J.D., McCammon. J.A.: NNScore 2.0: a neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 51, 2897–2903 (2011). https://doi.org/10.1021/ci2003889

  15. Sharma, G., First, E.A.: Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase. J. Biol. Chem. 284, 4179–4190 (2009). https://doi.org/10.1074/jbc.m808500200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss, M.S., Brandl, M., Sühnel, J., Pal, D., Hilgenfeld, R.: More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26, 521–523 (2001). https://doi.org/10.1016/s0968-0004(01)01935-1

  17. Steiner, T.: C–H···O hydrogen bonding in crystals. Cryst. Rev. 9, 177–228 (2003). https://doi.org/10.1080/08893110310001621772

  18. Lavecchia, A.: Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today 24, 2017–2032 (2019). https://doi.org/10.1016/j.drudis.2019.07.006

  19. Stokes, J.M., et al.: A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020). https://doi.org/10.1016/j.cell.2020.01.021

Download references

Acknowledgments

This study was supported by a grant of the State Program of Scientific Research “Convergence 2020” (subprogram “Consolidation”, project 3.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Andrianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolaev, G.I., Shuldov, N.A., Anischenko, A.I., Tuzikov, A.V., Andrianov, A.M. (2020). Development of a Neural Network-Based Approach for Prediction of Potential HIV-1 Entry Inhibitors Using Deep Learning and Molecular Modeling Methods. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics