Skip to main content

HiChew: a Tool for TAD Clustering in Embryogenesis

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Abstract

The three-dimensional structure of the Drosophila chromatin has been shown to change at the early stages of embryogenesis from the state with no local structures to compartmentalized chromatin segregated into topologically associated domains (TADs). However, the dynamics of TAD formation and its association with the expression and epigenetics dynamics is not fully understood. As TAD calling and analysis of TAD dynamics have no standard, universally accepted solution, we have developed HiChew, a specialized tool for segmentation of Hi-C maps into TADs of a given expected size and subsequent clustering of TADs based on their dynamics during the embryogenesis. To validate the approach, we demonstrate that HiChew clusters correlate with genomic and epigenetic characteristics. Particularly, in accordance with previous findings, the maturation rate of TADs is positively correlated with the number of housekeeping genes per TAD and negatively correlated with the length of housekeeping genes. We also report a high positive correlation of the maturation rate of TADs with the growth rate of the associated ATAC-Seq signal.

This work is supported by RFBR grant 19-34-90136, and by Skoltech Systems Biology Fellowship for Aleksandra Galitsyna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdennur, N., Mirny, L.: Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36(1), 311–316 (2020). https://doi.org/10.1093/bioinformatics/btz540

    Article  PubMed  Google Scholar 

  2. Blythe, S.A., Wieschaus, E.F.: Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160(6), 1169–1181 (2015). https://doi.org/10.1016/j.cell.2015.01.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonev, B., et al.: Multiscale 3D genome rewiring during mouse neural development. Cell 171(3), 557–572 (2017). https://doi.org/10.1016/j.cell.2017.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandes, U., et al.: On finding graph clusterings with maximum modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_12

    Chapter  Google Scholar 

  5. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J.: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10(12), 1213–1218 (2013). https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flyamer, I.M., et al.: Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544(7648), 110–114 (2017). https://doi.org/10.1038/nature21711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forcato, M., Nicoletti, C., Pal, K., Livi, C.M., Ferrari, F., Bicciato, S.: Comparison of computational methods for Hi-C data analysis. Nat. Methods 14(7), 679–685 (2017). https://doi.org/10.1038/nmeth.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fulco, C.P., et al.: Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51(12), 1664–1669 (2019). https://doi.org/10.1038/s41588-019-0538-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heyn, P., et al.: The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep. 6(2), 285–292 (2014). https://doi.org/10.1016/j.celrep.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  10. Hug, C.B., Grimaldi, A.G., Kruse, K., Vaquerizas, J.M.: Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169(2), 216–228 (2017). https://doi.org/10.1016/j.cell.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Imakaev, M., et al.: Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9(10), 999–1003 (2012). https://doi.org/10.1038/nmeth.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavaburst. https://github.com/nvictus/lavaburst (Accessed 10 Feb 2020)

  13. Sauerwald, N., Singhal, A., Kingsford, C.: Analysis of the structural variability of topologically associated domains as revealed by Hi-C. NAR Genom. Bioinform. 2(1) (2020). https://doi.org/10.1093/nargab/lqz008

  14. Schulz, K.N., Harrison, M.M.: Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20(4), 221–234 (2019). https://doi.org/10.1038/s41576-018-0087-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stadhouders, R., et al.: Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet. 50(2), 238–249 (2018). https://doi.org/10.1038/s41588-017-0030-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ulianov, S.V., et al.: Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26(1), 70–84 (2016). https://doi.org/10.1101/gr.196006.115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai S. Bykov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bykov, N.S., Sigalova, O.M., Gelfand, M.S., Galitsyna, A.A. (2020). HiChew: a Tool for TAD Clustering in Embryogenesis. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics