Skip to main content

Green Crop Image Segmentation Based on Superpixel Blocks and Decision Tree

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12240))

Included in the following conference series:

  • 1145 Accesses

Abstract

When segmenting green crops, we usually use green indexes, such as Excess Green Index (ExG), Combined Indices 2 (COM2), Modified Excess Green Index (MExG) etc., which are regarded as efficient methods. However, they can’t extract green crop exactly under complex environmental conditions. Particularly, they can’t segment green crops from complex soil backgrounds, such as with high light or deep shadow areas in crop leaves. To address current deficiencies in green crop segmentation, this paper introduces a new crop segmentation method to extract more compete green crops. Firstly, a pre-processing procedure divides the crop images into superpixel blocks by using Simple Linear Iterative Clustering (SLIC) algorithm, then these superpixel blocks are classified into three class by using Classification And Regression Tree (CART) decision tree based on a seven-dimensional(7-D) features vector constructed in this paper: only crop blocks (OC-block), only background blocks (OB-blocks) and CBE-blocks within which crop and background both coexist. Finally, CBE-blocks are processed by making good use of the advantage of ExG to exact green crops in them. Experimental results show that the algorithm proposed in this paper can segment accurately the green crops from the soil backgrounds, even under relative complex field conditions with \( Accuracy \) of 98.44%, \( Precision \) of 91.75%, Recall of 91.78%, FPR of 0.55% and F1_score of 89.31%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Z., Xiang, B., Song, Y., Lu, H., Liu, Q.: An improved unsupervised image segmentation method based on multi-objective particle swarm optimization clustering algorithm. Comput. Mat. Con. 58(2), 451–461 (2019)

    Google Scholar 

  2. Davis, G., Casady, W.W., Massey, R.E.: Precision Agriculture: An introduction. Extension publications (MU) (1998)

    Google Scholar 

  3. Nelson, D.C., Giles, J.F.: Implications of postemergence tillage on root injury and yields of potatoes. Am. Potato J. 63(8), 445–446 (1986)

    Google Scholar 

  4. Eyre, M.D., Critchley, C.N.R., Leifert, C., Wilcockson, S.J.: Crop sequence, crop protection and fertility management effects on weed cover in an organic/conventional farm management trial. Eur. J. Agron. 34(3), 153–162 (2011)

    Article  Google Scholar 

  5. Liu, F., O’Connell, N.V.: Off-site movement of surface-applied simazine from a citrus orchard as affected by irrigation incorporation. Weed Sci. 50(5), 672–676 (2002)

    Article  Google Scholar 

  6. Spliid, N.H., Køppen, B.: Occurrence of pesticides in Danish shallow ground water. Chemosphere 37(7), 1307–1316 (1998)

    Article  Google Scholar 

  7. Otsu, N.: A threshold selection method from gray-level histograms. IEEE  Trans. Syst.  Man.  Cyber. 9(1), 62–66 (1979)

    Article  Google Scholar 

  8. Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38(1), 259–269 (1995)

    Article  Google Scholar 

  9. Hague, T., Tillett, N.D., Wheeler, H.: Automated crop and weed monitoring in widely spaced cereals. Precision Agric. 7(1), 21–32 (2006)

    Article  Google Scholar 

  10. Meyer, G.E., Neto, J.C., Jones, D.D., Hindman, T.W.: Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 42(3), 161–180 (2004)

    Article  Google Scholar 

  11. Kataoka, T., Kaneko, T., Okamoto, H., Hata, S.: Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2, b1079-b1083. IEEE, Kobe, Japan (2003)

    Google Scholar 

  12. Guijarro, M., Pajares, G., Riomoros, I., Herrera, P.J., Burgos-Artizzu, X.P., Ribeiro, A.: Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 75(1), 75–83 (2011)

    Article  Google Scholar 

  13. Guerrero, J.M., Pajares, G., Montalvo, M., Romeo, J., Guijarro, M.: Support vector machines for crop/weeds identification in maize fields. Expert Syst. Appl. 39(12), 11149–11155 (2012)

    Article  Google Scholar 

  14. Ji-Hua, M., Bing-Fang, W., Qiang-Zi, L.: A global crop growth monitoring system based on remote sensing. In: 2006 IEEE International Symposium on Geoscience and Remote Sensing. pp. 2277–2280. IEEE (2006)

    Google Scholar 

  15. Anand, R., Veni, S., Aravinth, J.: An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method. In: 2016 international conference on recent trends in information technology (ICRTIT), pp. 1–6. IEEE June 2016

    Google Scholar 

  16. Padol, P.B., Yadav, A.A.: SVM classifier based grape leaf disease detection. In: 2016 Conference on advances in signal processing (CASP), pp. 175–179. IEEE June 2016

    Google Scholar 

  17. de Luna, R. G., Dadios, E. P., Bandala, A. A.: Automated image capturing system for deep learning-based tomato plant leaf disease detection and recognition. In: TENCON 2018–2018 IEEE Region 10 Conference, pp. 1414-1419. IEEE october 2018

    Google Scholar 

  18. Sardogan, M., Tuncer, A., Ozen, Y.: Plant leaf disease detection and classification based on CNN with LVQ algorithm. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 382–385. IEEE September 2018

    Google Scholar 

  19. Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A.: A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recogn. 41(2), 521–530 (2008)

    Article  Google Scholar 

  20. Kirk, K., Andersen, H.J., Thomsen, A.G., Jørgensen, J.R., Jørgensen, R.N.: Estimation of leaf area index in cereal crops using red–green images. Biosyst. Eng. 104(3), 308–317 (2009)

    Article  Google Scholar 

  21. Ren, X., Malik, J.: Learning a classification model for segmentation. ICCV, 1, 10–17 vol.1 (2003)

    Google Scholar 

  22. Fu, P., Xu, Q., Zhang, J., Geng, L.: A noise-resistant superpixel segmentation algorithm for hyperspectral images. Comput. Mat. Cont. 59(2), 509–515 (2019)

    Google Scholar 

  23. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis.  IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  26. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  27. Hamuda, E., Glavin, M., Jones, E.: A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 184–199 (2016)

    Article  Google Scholar 

  28. Peter, K.: Image Segmentation using SLIC SuperPixels and DBSCAN Clustering. Available on-line: peterkovesi.com/projects/segmentation, Accessed 27 Jan 2020

    Google Scholar 

  29. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR), 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  30. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  31. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 75(2), 337–346 (2011)

    Article  Google Scholar 

  32. Breiman, L.: Classification and regression trees. Routledge, London, England (2017)

    Book  Google Scholar 

  33. Arifuzzaman, M., Gazder, U., Alam, M.S., Sirin, O., Mamun, A.A.: Modelling of asphalt’s adhesive behaviour using classification and regression tree (CART) Analysis. Computational intelligence and neuroscience (2019)

    Google Scholar 

  34. Kaur, K., Kaur, K.: Failure prediction, lead time estimation and health degree assessment for hard disk drives using voting based decision trees. Comput. Mat. Cont. 60(3), 913–946 (2019)

    Google Scholar 

  35. Pranali T. S., Mahesh C. A., Ragini P. M., Pawar T. S.: Decision Tree Classifier For Mining Data Stream: A Survey, International Journal of Science & Engineering Development Research, ISSN:2455–2631, 4(1), 103-106, Available: http://www.ijrti.org/papers/IJRTI1901017.pdfAccessed 27 Jan 2020

  36. Vagliasindi, G., Arena, P., Murari, A.: CART data analysis to attain interpretability in a Fuzzy Logic Classifier. In: 2009 International Joint Conference on Neural Networks, pp. 3164–3171. IEEE (2009)

    Google Scholar 

  37. Seera, M., Lim, C.P., Tan, S.C.: A hybrid FAM-CART model for online data classification. Comput. Intell. 34(2), 562–581 (2018)

    Article  MathSciNet  Google Scholar 

  38. Jo, K., Kweon, J., Kim, Y.H., Choi, J.: Segmentation of the main vessel of the left anterior descending artery using selective feature mapping in coronary angiography. IEEE Access 7, 919–930 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.31760254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Zhang, Z. (2020). Green Crop Image Segmentation Based on Superpixel Blocks and Decision Tree. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12240. Springer, Cham. https://doi.org/10.1007/978-3-030-57881-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57881-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57880-0

  • Online ISBN: 978-3-030-57881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics