Skip to main content

An Improved Quantum Identity Authentication Protocol for Multi-party Secure Communication

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12240))

Included in the following conference series:

Abstract

Quantum secure identity authentication is a gripping part in the field of quantum communication which has an obvious superiority to makes the identity authentication system more secure. There are many existing multi-party quantum authentication protocols whereas not impeccable, some potential insecurity for some multi-party communication in those protocols can lead to be eavesdropped. Therefore, this paper aims to proposed an improved multi-party quantum identity authentication for secure communication scheme, by coalescing two advancing methods from Hong et al. [23] and Xiong et al. [24] and introduces a simple protocol that incorporates quantum identity authentication technique into multi-party communication medley with Greenberger-Horne-Zeilinger states as well as photons in Bell entangled states can be safely measured by legitimate parties. This protocol literally not only smooth over the insecure problems but also easy to realize. With this improved protocol, the authentication method can defend many attacks in the real world. In addition, effective protection against various attacks like eavesdropping or entangled-and-measure attack can also be achieved via this improved protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (1984)

    Google Scholar 

  4. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992). https://doi.org/10.1007/BF00191318

    Article  MATH  Google Scholar 

  5. Jacak, M., Martynkien, T., Jacak, W., et al.,: Quantum cryptography: quantum mechanics as foundation for theoretically unconditional security in communication. Institute of Physics, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

    Google Scholar 

  6. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  MathSciNet  Google Scholar 

  7. Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  Google Scholar 

  8. Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)

    Article  Google Scholar 

  9. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  Google Scholar 

  10. Liu, B., Gao, Z.F., Xiao, D., Huang, W., Liu, X., Xu, B.: Quantum identity authentication in the orthogonal-state-encoding QKD system. Quantum Inf. Process. 18(137), (2019)

    Google Scholar 

  11. Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)

    Article  MathSciNet  Google Scholar 

  12. Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ma, H., Huang, P., Bao, W., Zeng, G.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15(6), 2605–2620 (2016). https://doi.org/10.1007/s11128-016-1283-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)

    Article  Google Scholar 

  15. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  Google Scholar 

  16. Gong, J., Zhang, W., Deng, Y. Q., Liu, B.,: The BB84 protocol with identity authentication. Chin. Core J. 04(03) (2011)

    Google Scholar 

  17. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599 (2007)

    Article  Google Scholar 

  18. Yan, D., Wang, X.G., Song, L.J., Zong, Z.G.: Cent. Eur. J. Phys. 5, 367 (2007)

    Google Scholar 

  19. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: Phys. Rev. Lett. 92, 107902 (2004)

    Article  Google Scholar 

  20. Lewenstein, M., Kraus, B., Cirac, J.I., Horodecki, P.: Phys. Rev. A 62, 052310 (2000)

    Article  Google Scholar 

  21. Yi, X.J., Wang, J.M.: Spin squeezing of superposition of multi-qubit GHZ state and W state. Int. J. Theor. Phys. 50, 2520–2525 (2011)

    Article  Google Scholar 

  22. Zawadzki, P.: Quantum identity authentication without entanglement. Quantum Inf. Process. 18(1), 1–12 (2018). https://doi.org/10.1007/s11128-018-2124-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, C., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 1–20 (2017). https://doi.org/10.1007/s11128-017-1681-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Ekert, A., Rarity, J., Tapster, P., Palma, G.M.: Practical quantum cryptography based on two-photon interferometry. Phys. Rev. Lett. 69, 1293 (1992)

    Article  Google Scholar 

  25. Xiong, J.X., Chang, Y., Zhang, S.B.: Quantum identity authentication protocol based on Bell states and entanglement swapping. Appl. Res. Comput. 36(4) (2019)

    Google Scholar 

  26. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. PRL 82, 1345 (1999)

    Article  MathSciNet  Google Scholar 

  27. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  Google Scholar 

  28. Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04209-0

    Book  MATH  Google Scholar 

  29. Zurek, W., Wootters, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

  30. Yan, L., Chang, Y., Zhang, S., Wang, Q., Sheng, Z., Sun, Y.: Measure-resend semi-quantum private comparison scheme using GHZ class states. Comput. Mater. Continua 61(2), 877–887 (2019)

    Article  Google Scholar 

  31. Zhao, X., et al.: A high gain, noise cancelling 3.1–10.6 GHz CMOS LNA for UWB application. Comput. Mater. Continua 60(1), 133–145 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Project of China (No. 2017YFB0802302), the Key Research and Development Project of Sichuan Province (No. 20ZDYF2324, No. 2019ZYD027, No. 2018TJPT0012), the Science and Technology Support Project of Sichuan Province (No. 2018GZ0204, No. 2016FZ0112, No. 2018RZ0072), the Science and Technology Project of Chengdu (No. 2017RK0000103ZF), the Innovation Team of Quantum Security Communication of Sichuan Province (No. 17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643), the Application Foundation Project of Sichuan Province (No. 2017JY0168), the Foundation of Chengdu University of Information Technology (No. J201707) and the College Students’ innovation project (No. S201910621082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, P., Huang, Y., Dai, J., Zhang, S. (2020). An Improved Quantum Identity Authentication Protocol for Multi-party Secure Communication. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12240. Springer, Cham. https://doi.org/10.1007/978-3-030-57881-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57881-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57880-0

  • Online ISBN: 978-3-030-57881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics