Skip to main content

Hiding Traces of Camera Anonymization by Poisson Blending

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12240))

Included in the following conference series:

Abstract

Sensor noise caused by photo response non-uniformity (PRNU) has been widely accepted as a reliable fingerprint for source camera identification (SCI). An interesting research topic in this area concerns the repudiability of PRNU-based SCI, which includes methods of removing or synthesizing the fingerprint on which forensic methods rely. Removing the PRNU fingerprint from a given image, also known as camera anonymization, is important for privacy protection and anti-tracking. However, camera anonymization sometimes introduces annoying visual artifacts in the resultant image. In this work, Poisson blending is used to hide the traces left by camera anonymization. Theoretical analysis and experimental results show that the proposed method can suppress the visual artifacts caused by camera anonymization effectively while maintaining the anti-forensic effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available in www.escience.cn/people/Zenghui.

References

  1. Geradts, Z., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for identification of images acquired with digital cameras. In: Proceedings of SPIE, Enabling Technologies for Law Enforcement Security, vol. 4232, pp. 505–512x (2001)

    Google Scholar 

  2. Kurosawa, K., Kuroki, K., Saitoh, N.: CCD fingerprint method identification of a video camera from videotaped images. In: Proceedings of ICIP, pp. 537–540 (2002)

    Google Scholar 

  3. Dirik, A.E., Sencar H.T., Memon, N.: Source camera identification based on sensor dust characteristics. In: IEEE Workshop on Signal Processing Applications for Public Security & Forensics (2007)

    Google Scholar 

  4. Thai, T.H., Cogranne, R., Retraint, F.: Camera model identification based on the heteroscedastic noise model. IEEE Trans. Image Process. 23(1), 250–263 (2014)

    Article  MathSciNet  Google Scholar 

  5. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1, 205–214 (2006)

    Article  Google Scholar 

  6. Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

    Article  Google Scholar 

  7. Li, C.T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 5(2), 280–287 (2010)

    Article  Google Scholar 

  8. Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402 (2012)

    Article  Google Scholar 

  9. Zeng, H., Kang, X.: Fast source camera identification using content adaptive guided image filter. J. Forensic Sci. 61(2), 520–526 (2016)

    Article  Google Scholar 

  10. Al-Ani, M., Khelifi, F.: On the SPN estimation in image forensics: a systematic empirical evaluation. IEEE Trans. Inf. Forensics Secur. 12(5), 1067–1081 (2017)

    Article  Google Scholar 

  11. Rosenfeld, K., Sencar, H.T.: A study of the robustness of PRNU-based camera identification. In: IS&T/SPIE Electronic Imaging (EI). International Society for Optics and Photonics (2009)

    Google Scholar 

  12. Gloe, T., Kirchner, M., Winkler, A., Bohme, R.: Can we trust digital image forensics? In: 15th International Conference on Multimedia, pp. 78–86 (2007)

    Google Scholar 

  13. Li, C.-T., Chang, C.-Y., Li, Y.: On the repudiability of device identification and image integrity verification using sensor pattern noise. In: Weerasinghe, D. (ed.) ISDF 2009. LNICST, vol. 41, pp. 19–25. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11530-1_3

    Chapter  Google Scholar 

  14. Zeng, H., Chen, J., Kang, X., Zeng, W.: Removing camera fingerprint to disguise photograph source. In: Proceedings of ICIP, pp. 1687–1691 (2015)

    Google Scholar 

  15. Bonettini, N., Bondi, L., Güera, D., et al.: Fooling PRNU-based detectors through convolutional neural networks. In: The 26th European Signal Processing Conference (EUSIPCO), pp. 957–961 (2018)

    Google Scholar 

  16. Dirik, A.E., Sencar, H.T., Memon, N.: Analysis of seam-carving-based anonymization of images against PRNU noise pattern-based source attribution. IEEE Trans. Inf. Forensics Secur. 9(12), 2277–2290 (2014)

    Article  Google Scholar 

  17. Entrieri, J., Kirchner, M.: Patch-based desynchronization of digital camera sensor fingerprints. IS&T Electron. Imaging (EI) 87, 1–9 (2016)

    Google Scholar 

  18. Mandelli, S., Bondi, L., Lameri, S., et al.: Inpainting-based camera anonymization. In: Proceedings of ICIP, pp. 1522–1526 (2007)

    Google Scholar 

  19. Goljan, M., Fridrich, J., Chen, M.: Defending against fingerprint-copy attack in sensor-based camera identification. IEEE Trans. Info. Forensics Secur. 6(1), 227–236 (2011)

    Article  Google Scholar 

  20. Zeng, H.: Rebuilding the credibility of sensor-based camera source identification. Multimed. Tools Appl. 75(21), 13871–13882 (2016)

    Article  Google Scholar 

  21. Zeng, H., Liu, J., Yu, J., et al.: A framework of camera source identification bayesian game. IEEE Trans. Cybern. 47(7), 1757–1768 (2017)

    Article  Google Scholar 

  22. Wang, P., Wang, Z., Chen, T., Ma, Q.: Personalized privacy protecting model in mobile social network. Comput. Mater. Continua 59(2), 533–546 (2019)

    Article  Google Scholar 

  23. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3) (2007)

    Google Scholar 

  24. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patch-Match: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3) (2009)

    Google Scholar 

  25. Papafitsoros, K., Schoenlieb, C.B., Sengul, B.: Combined first and second order total variation inpainting using split Bregman. Image Process. Line (IPOL) 3, 112–136 (2013)

    Article  Google Scholar 

  26. Bas, P., Filler, T., Pevný, T.: “Break Our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  27. Meng, R., Rice, S.G., Wang, J., Sun, X.: A fusion steganographic algorithm based on faster R-CNN. Comput. Mater. Continua 55(1), 001–016 (2018)

    Google Scholar 

  28. Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Info. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  29. Kang, Y., Liu, F., Yang, C., et al.: Color image steganalysis based on residuals of channel differences. Comput. Mater. Continua 59(1), 315–329 (2019)

    Article  Google Scholar 

  30. Perez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22, 313–318 (2003)

    Article  Google Scholar 

  31. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  32. Afifi, M., Hussain, K.F.: MPB: a modified poisson blending technique. Comput. Vis. Media 1(4), 331–341 (2015)

    Article  Google Scholar 

  33. Gloe, T., Bohme, R.: The Dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

    Article  Google Scholar 

  34. Shullani, D., Fontani, M., Iuliani, M., Al Shaya, O., Piva, A.: VISION: a video and image dataset for source identification. EURASIP J. Inf. Secur. 2017, 15 (2017). https://doi.org/10.1186/s13635-017-0067-2

    Article  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers, pp. 1398–1402 (2003)

    Google Scholar 

  37. Teo, P.C., Heeger, D.J.: Perceptual image distortion. In: Proceedings of IEEE International Conference on Image Processing, pp. 982–986 (1994)

    Google Scholar 

  38. Zhou, W., Bovik, A.C.: Mean squared error: love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  39. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradientbased learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  40. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  41. Bonettini, N., Bondi, L., Guera, D., et al.: Fooling PRNU-based detectors through convolutional neural networks. In: European Signal Processing Conference (EUSIPCO), pp. 957–961 (2018)

    Google Scholar 

Download references

Acknowledgment

We would like to thank the authors of [18] for sharing their codes. This work was supported by NSFC (grant no. 61702429), China Scholarship Council (no. 201908515095), and the Research Fund for the Doctoral Program of Southwest University of Science and Technology (grant no. 18zx7163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjie Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, H., Peng, A., Kang, X. (2020). Hiding Traces of Camera Anonymization by Poisson Blending. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12240. Springer, Cham. https://doi.org/10.1007/978-3-030-57881-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57881-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57880-0

  • Online ISBN: 978-3-030-57881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics