Skip to main content

Benchmark for Performance Evaluation of SHACL Implementations in Graph Databases

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12173))

Included in the following conference series:

  • 786 Accesses

Abstract

Due to the rise in the commercial usage of knowledge graphs, the validation of graph-based data has gained importance over the past few years in the field of Semantic Web. In spite of this trend, the number of graph databases that support W3C’s validation specification Shapes Constraint Language (SHACL) can still be regarded as low, and best practices for their SHACL implementations performance evaluation are lacking. In this paper, we propose a benchmark for performance evaluation of SHACL implementations and present an evaluation of five common graph databases using the benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A domain specification is a domain specific pattern that restricts and extends schema.org for domain and task specific needs. Currently, 84 domain specifications are available that focus on providing representations for tourism related data and can be used for validation purposes [22].

  2. 2.

    Benchmark for SHACL Performance in Knowledge Bases, doi: 10.17632/jfrdpnb945.1.

References

  1. Apache: Jena SHACL (2019). https://jena.apache.org/documentation/shacl/index.html

  2. Apache: Jena TDB (2019). https://jena.apache.org/documentation/tdb

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  4. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(2), 1–24 (2009)

    Article  Google Scholar 

  5. Capotă, M., Hegeman, T., Iosup, A., Prat-Pérez, A., Erling, O., Boncz, P.: Graphalytics: a big data benchmark for graph-processing platforms. In: Proceedings of the GRADES 2015, p. 7. ACM (2015)

    Google Scholar 

  6. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S., Martínez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on the HPC scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16720-1_4

    Chapter  Google Scholar 

  7. Eclipse PMC: RDF4J (2019). https://rdf4j.org/documentation

  8. Eclipse PMC: RDF4J Javadoc (2019). https://rdf4j.org/javadoc/latest/

  9. Franz Inc.: AllegroGraph (2019). https://franz.com/agraph/support/documentation

  10. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)

    Article  Google Scholar 

  11. International Organization for Standardization: ISO 3166 Standard for Austria (2019). https://www.iso.org/obp/ui/#iso:code:3166:AT

  12. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In: 2013 International Conference on Social Computing, pp. 708–715. IEEE (2013)

    Google Scholar 

  13. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in Tyrol than in Austria? Analyzing schema.org usage in the hotel domain. In: Inversini, A., Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016, pp. 99–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2_8

    Chapter  Google Scholar 

  14. Kärle, E., Şimşek, U., Panasiuk, O., Fensel, D.: Building an ecosystem for the Tyrolean tourism knowledge graph. In: Pautasso, C., Sánchez-Figueroa, F., Systä, K., Murillo Rodríguez, J.M. (eds.) ICWE 2018. LNCS, vol. 11153, pp. 260–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03056-8_25

    Chapter  Google Scholar 

  15. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL), W3C Recommendation, 20 July 2017 (2017). https://www.w3.org/TR/shacl

  16. McColl, R.C., Ediger, D., Poovey, J., Campbell, D., Bader, D.A.: A performance evaluation of open source graph databases. In: Proceedings of the First Workshop on Parallel Programming For Analytics Applications, pp. 11–18. ACM (2014)

    Google Scholar 

  17. Ontotext: GraphDB (2019). http://graphdb.ontotext.com/documentation

  18. Panasiuk, O., Kärle, E., Şimşek, U., Fensel, D.: Defining tourism domains for semantic annotation of web content. e-Rev. Tour. Res. 9 (2018). https://arxiv.org/abs/1711.03425. Research notes from the ENTER 2018 Conference on ICT in Tourism

  19. Panasiuk, O., Akbar, Z., Gerrier, T., Fensel, D.: Representing GeoData for tourism with schema. org. In: GISTAM, pp. 239–246 (2018)

    Google Scholar 

  20. Schema Tourism Working Group: Schema tourism (2020). https://ds.sti2.org/

  21. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL performance benchmark. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 222–233. IEEE (2009)

    Google Scholar 

  22. Şimşek, U., Kärle, E., Holzknecht, O., Fensel, D.: Domain specific semantic validation of schema.org annotations. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 417–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4_31

    Chapter  Google Scholar 

  23. Singhal, A.: Introducing the knowledge graph: things, not strings (2012). https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

  24. Solid IT GMBH: DB-engines ranking of graph DBMS (2020). https://db-engines.com/en/ranking/graph+dbms

  25. Stardog Union Inc.: Stardog (2019). https://www.stardog.com/docs

  26. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. CoRR abs/1111.4503 (2011). http://arxiv.org/abs/1111.4503

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schaffenrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaffenrath, R., Proksch, D., Kopp, M., Albasini, I., Panasiuk, O., Fensel, A. (2020). Benchmark for Performance Evaluation of SHACL Implementations in Graph Databases. In: Gutiérrez-Basulto, V., Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2020. Lecture Notes in Computer Science(), vol 12173. Springer, Cham. https://doi.org/10.1007/978-3-030-57977-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57977-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57976-0

  • Online ISBN: 978-3-030-57977-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics