Skip to main content

The Impact of Spillback on the Price of Anarchy for Flows over Time

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2020)

Abstract

Flows over time enable a mathematical modeling of traffic that changes as time progresses. In order to evaluate these dynamic flows from a game theoretical perspective we consider the price of anarchy (PoA). In this paper we study the impact of spillback effects on the PoA, which turn out to be substantial. It is known that, in general, the PoA is unbounded in the spillback setting. We extend this by showing that it is still unbounded even when considering networks with unit edge capacities and that the Braess ratio can be arbitrarily large.

In contrast to that, we show that on a fixed network the PoA as a function of the flow amount is bounded by a constant and also upper bound the PoA for the set of networks where the outflow capacities satisfy certain constraints depending on the quickest flow. This upper bound only depends on the worst spillback factor of the Nash flows over time of the given network. It therefore provides a way to quantify the impact of spillback to the quality of the dynamic equilibria.

In addition, we show the surprising fact that the introduction of spillback behavior can actually speed up dynamic equilibria in some networks.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant BR 4744/2-1 and Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All results from Sect. 4 can also be translated to the total delay price of anarchy measuring the arrival times of all particles combined, similarly as is done in  [1].

  2. 2.

    We imagine i as a natural number. But since it is an open question whether the event point converges to a finite limit, it is possible to expand the index set to the ordinal numbers up to \(\omega ^\omega \). In this case the i-th phase should be defined as \((\theta _i, \theta _{i + 1})\) as it is not possible to determine a predecessor of an ordinal number. For the sake of simplicity however, we stick to the definition where \((0, \theta _1)\) is the first phase.

  3. 3.

    Note, that in  [7] an even more general result is shown for the Koch-Skutella model.

References

  1. Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. Games Econ. Behav. 92, 232–247 (2015)

    Article  MathSciNet  Google Scholar 

  2. Braess, D.: Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1), 258–268 (1968). https://doi.org/10.1007/BF01918335

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In: Proceedings of the 2017 ACM Conference on Economic and Computation, pp. 695–696 (2017)

    Google Scholar 

  4. Cominetti, R., Correa, J.R., Larré, O.: Existence and uniqueness of equilibria for flows over time. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 552–563. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_44

    Chapter  MATH  Google Scholar 

  5. Cominetti, R., Correa, J., Larré, O.: Dynamic equilibria in fluid queueing networks. Oper. Res. 63(1), 21–34 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_14

    Chapter  Google Scholar 

  7. Correa, J., Cristi, A., Oosterwijk, T.: On the price of anarchy for flows over time. In: Proceedings of the 2019 ACM Conference on Economic and Computation, pp. 559–577. ACM (2019)

    Google Scholar 

  8. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (2015)

    MATH  Google Scholar 

  9. Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959)

    Article  MathSciNet  Google Scholar 

  10. Graf, L., Harks, T., Sering, L.: Dynamic flows with adaptive route choice. Math Program. 1–27 (2020). https://doi.org/10.1007/s10107-020-01504-2

  11. Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas Koch, L.: Competitive packet routing with priority lists. ACM Trans. Econ. Comput. 6(1), 4 (2018)

    Article  MathSciNet  Google Scholar 

  12. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011). https://doi.org/10.1007/s00224-010-9299-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38

    Chapter  Google Scholar 

  14. Macko, M., Larson, K., Steskal, Ľ.: Braess’s paradox for flows over time. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 262–275. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16170-4_23

    Chapter  Google Scholar 

  15. Meunier, F., Wagner, N.: Equilibrium results for dynamic congestion games. Transp. Sci. 44(4), 524–536 (2010)

    Article  Google Scholar 

  16. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1–3. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_1

    Chapter  Google Scholar 

  17. Peis, B., Tauer, B., Timmermans, V., Vargas Koch, L.: Oligopolistic competitive packet routing. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2018)

    Google Scholar 

  18. Roughgarden, T.: Selfish Routing and the Price of Anarchy, vol. 174. MIT Press, Cambridge (2005)

    Google Scholar 

  19. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  20. Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games with seasonal flows. Oper. Res. 66(2), 327–339 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sering, L., Skutella, M.: Multi-source multi-sink Nash flows over time. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, vol. 65, pp. 12:1–12:20 (2018)

    Google Scholar 

  22. Sering, L., Vargas Koch, L.: Nash flows over time with spillback. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 935–945. SIAM (2019)

    Google Scholar 

  23. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21

    Chapter  Google Scholar 

  24. Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)

    Google Scholar 

  25. Von Stackelberg, H.: Marktform und Gleichgewicht. J. Springer, Heidelberg (1934)

    Google Scholar 

  26. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19(7), 1602–1612 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Sering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Israel, J., Sering, L. (2020). The Impact of Spillback on the Price of Anarchy for Flows over Time. In: Harks, T., Klimm, M. (eds) Algorithmic Game Theory. SAGT 2020. Lecture Notes in Computer Science(), vol 12283. Springer, Cham. https://doi.org/10.1007/978-3-030-57980-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57980-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57979-1

  • Online ISBN: 978-3-030-57980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics