Abstract
Flows over time enable a mathematical modeling of traffic that changes as time progresses. In order to evaluate these dynamic flows from a game theoretical perspective we consider the price of anarchy (PoA). In this paper we study the impact of spillback effects on the PoA, which turn out to be substantial. It is known that, in general, the PoA is unbounded in the spillback setting. We extend this by showing that it is still unbounded even when considering networks with unit edge capacities and that the Braess ratio can be arbitrarily large.
In contrast to that, we show that on a fixed network the PoA as a function of the flow amount is bounded by a constant and also upper bound the PoA for the set of networks where the outflow capacities satisfy certain constraints depending on the quickest flow. This upper bound only depends on the worst spillback factor of the Nash flows over time of the given network. It therefore provides a way to quantify the impact of spillback to the quality of the dynamic equilibria.
In addition, we show the surprising fact that the introduction of spillback behavior can actually speed up dynamic equilibria in some networks.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant BR 4744/2-1 and Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We imagine i as a natural number. But since it is an open question whether the event point converges to a finite limit, it is possible to expand the index set to the ordinal numbers up to \(\omega ^\omega \). In this case the i-th phase should be defined as \((\theta _i, \theta _{i + 1})\) as it is not possible to determine a predecessor of an ordinal number. For the sake of simplicity however, we stick to the definition where \((0, \theta _1)\) is the first phase.
- 3.
Note, that in [7] an even more general result is shown for the Koch-Skutella model.
References
Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. Games Econ. Behav. 92, 232–247 (2015)
Braess, D.: Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1), 258–268 (1968). https://doi.org/10.1007/BF01918335
Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In: Proceedings of the 2017 ACM Conference on Economic and Computation, pp. 695–696 (2017)
Cominetti, R., Correa, J.R., Larré, O.: Existence and uniqueness of equilibria for flows over time. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 552–563. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_44
Cominetti, R., Correa, J., Larré, O.: Dynamic equilibria in fluid queueing networks. Oper. Res. 63(1), 21–34 (2015)
Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_14
Correa, J., Cristi, A., Oosterwijk, T.: On the price of anarchy for flows over time. In: Proceedings of the 2019 ACM Conference on Economic and Computation, pp. 559–577. ACM (2019)
Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (2015)
Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959)
Graf, L., Harks, T., Sering, L.: Dynamic flows with adaptive route choice. Math Program. 1–27 (2020). https://doi.org/10.1007/s10107-020-01504-2
Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas Koch, L.: Competitive packet routing with priority lists. ACM Trans. Econ. Comput. 6(1), 4 (2018)
Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011). https://doi.org/10.1007/s00224-010-9299-y
Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38
Macko, M., Larson, K., Steskal, Ľ.: Braess’s paradox for flows over time. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 262–275. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16170-4_23
Meunier, F., Wagner, N.: Equilibrium results for dynamic congestion games. Transp. Sci. 44(4), 524–536 (2010)
Papadimitriou, C.H.: Algorithms, games, and the internet. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1–3. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_1
Peis, B., Tauer, B., Timmermans, V., Vargas Koch, L.: Oligopolistic competitive packet routing. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2018)
Roughgarden, T.: Selfish Routing and the Price of Anarchy, vol. 174. MIT Press, Cambridge (2005)
Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)
Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games with seasonal flows. Oper. Res. 66(2), 327–339 (2018)
Sering, L., Skutella, M.: Multi-source multi-sink Nash flows over time. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, vol. 65, pp. 12:1–12:20 (2018)
Sering, L., Vargas Koch, L.: Nash flows over time with spillback. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 935–945. SIAM (2019)
Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21
Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)
Von Stackelberg, H.: Marktform und Gleichgewicht. J. Springer, Heidelberg (1934)
Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19(7), 1602–1612 (1971)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Israel, J., Sering, L. (2020). The Impact of Spillback on the Price of Anarchy for Flows over Time. In: Harks, T., Klimm, M. (eds) Algorithmic Game Theory. SAGT 2020. Lecture Notes in Computer Science(), vol 12283. Springer, Cham. https://doi.org/10.1007/978-3-030-57980-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-57980-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57979-1
Online ISBN: 978-3-030-57980-7
eBook Packages: Computer ScienceComputer Science (R0)