Skip to main content

Oblivious Tight Compaction In O(n) Time with Smaller Constant

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

Abstract

Oblivious compaction is a crucial building block for hash-based oblivious RAM. Asharov et al. recently gave a O(n) algorithm for oblivious tight compaction [2]. Their algorithm is deterministic and asymptotically optimal, but the implied constant is \({\gg }2^{111}\). We give a new algorithm for oblivious tight compaction that runs in time \({<}23913.17n + o(n)\). As part of our construction, we give a new result in the bootstrap percolation of random regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.: Optorama: optimal oblivious RAM. Cryptology ePrint Archive, Report 2018/892 (2018). https://eprint.iacr.org/2018/892

  2. Asharov, G., Komargodski, I., Lin, W.-K., Peserico, E., Shi, E.: Oblivious parallel tight compaction. Cryptology ePrint Archive, Report 2020/125 (2020). https://eprint.iacr.org/2020/125

  3. Balogh, J., Bollobás, B., Morris, R.: Graph bootstrap percolation. Random Struct. Algorithms 41(4), 413–440 (2012)

    Article  MathSciNet  Google Scholar 

  4. Balogh, J., Bollobás, B., Morris, R., Riordan, O.: Linear algebra and bootstrap percolation. J. Comb. Theor. Ser. A 119(6), 1328–1335 (2012)

    Article  MathSciNet  Google Scholar 

  5. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bradonjić, M., Saniee, I.: Bootstrap percolation on random geometric graphs. Probab. Eng. Informational Sci. 28(2), 169–181 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed ORAM. IACR Cryptology ePrint Arch. 2018, 706 (2018)

    Google Scholar 

  8. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C Solid State Phys. 12(1), L31 (1979)

    Article  Google Scholar 

  9. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 1953–1987 (2014)

    Google Scholar 

  10. Cui, S., Belguith, S., Zhang, M., Asghar, M.R., Russello, G.: Preserving access pattern privacy in SGX-assisted encrypted search. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2018)

    Google Scholar 

  11. Di Muro, M.A., Buldyrev, S.V., Braunstein, L.A.: Reversible bootstrap percolation: fake news and fact-checking. arXiv preprint arXiv:1910.09516 (2019)

  12. Dittmer, S., Ostrovsky, R.: Oblivious tight compaction in o(n) time with smaller constant. Cryptology ePrint Archive, Report 2020/377 (2020). https://eprint.iacr.org/2020/377

  13. Friedman, J., et al.: Relative expanders or weakly relatively ramanujan graphs. Duke Math. J. 118(1), 19–35 (2003)

    Article  MathSciNet  Google Scholar 

  14. Gärtner, B., Zehmakan, A.N.: Majority model on random regular graphs. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 572–583. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_42

    Chapter  Google Scholar 

  15. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

    Article  MathSciNet  Google Scholar 

  16. Guggiola, A., Semerjian, G.: Minimal contagious sets in random regular graphs. J. Stat. Phys. 158(2), 300–358 (2015)

    Article  MathSciNet  Google Scholar 

  17. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226(228), 593–616 (1995)

    Article  MathSciNet  Google Scholar 

  18. Jimbo, S., Maruoka, A.: Expanders obtained from affine transformations. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 88–97 (1985)

    Google Scholar 

  19. Lelarge, M.: Diffusion and cascading behavior in random networks. ACM SIGMETRICS Performance Eval. Rev. 39(3), 34–36 (2011)

    Article  Google Scholar 

  20. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_22

    Chapter  Google Scholar 

  21. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_42

    Chapter  Google Scholar 

  22. Margulis, G.A.: Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2(1), 71–78 (1982)

    Article  MathSciNet  Google Scholar 

  23. Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb. 16(1), R2 (2009)

    Article  MathSciNet  Google Scholar 

  24. Morrison, N., Noel, J.A.: Extremal bounds for bootstrap percolation in the hypercube. J. Comb. Theo. Ser. A 156, 61–84 (2018)

    Article  MathSciNet  Google Scholar 

  25. Nayak, K., Katz, J.: An oblivious parallel ram with o (log2 n) parallel runtime blowup. IACR Cryptology ePrint Arch. 2016, 1141 (2016)

    Google Scholar 

  26. Pippenger, N.: Self-routing superconcentrators. J. Comput. Syst. Sci. 52(1), 53–60 (1996)

    Article  MathSciNet  Google Scholar 

  27. Riedl, E.: Largest minimal percolating sets in hypercubes under 2-bootstrap percolation. Electron. J. Comb. 17(R80), 1 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Riedl, E.: Largest and smallest minimal percolating sets in trees. Electron. J. Comb. 19, P64 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ruciński, A., Wormald, N.C.: Random graph processes with degree restrictions. Comb. Probab. Comput. 1(2), 169–180 (1992)

    Article  MathSciNet  Google Scholar 

  30. Sabhapandit, S., Dhar, D., Shukla, P.: Hysteresis in the random-field ising model and bootstrap percolation. Phys. Rev. Lett. 88(19), 197202 (2002)

    Article  Google Scholar 

  31. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 299–310 (2013)

    Google Scholar 

  32. Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Comb. Probab. Comput. 8(4), 377–396 (1999)

    Article  MathSciNet  Google Scholar 

  33. Turova, T.S., Vallier, T.: Bootstrap percolation on a graph with random and local connections. J. Stat. Phys. 160(5), 1249–1276 (2015)

    Article  MathSciNet  Google Scholar 

  34. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 293–304 (2012)

    Google Scholar 

  35. Zehmakan, A.N.: Opinion forming in erdős-rényi random graph and expanders. Discrete Appl. Math. (2019)

    Google Scholar 

Download references

Funding acknowledgements

This work was supported in part by DARPA and NIWC Pacific under contract N66001-15-C-4065, as well as the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-1902070008. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Rafail Ostrovsky was supported in part by NSF-BSF Grant 1619348, US-Israel BSF grant 2012366, DARPA under Cooperative Agreement No: HR0011-20-2-0025, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Dittmer .

Editor information

Editors and Affiliations

Appendices

A Margulis Graph Compaction

1.1 A.1 Analysis of Algorithm 11

The argument here is similar to the argument in § 5.1, and is given in full in the full version of this paper [12].

B Combinatorial Lemmas

We state here a number of combinatorial lemmas we need throughout the paper, and give a citation if the result is well-known. For proofs and discussion, we refer to the full version of this paper [12].

Lemma 1

[Margulis [22]] There is a family of 4-regular expander graphs \(\{G_k\}_{k \ge 0}\) with girth satisfying \(|G_k| \ge 0.756 \log G_k\), with \(G_k = (p_k^3-p_k)\), for \(p_k\) the kth prime.

figure k

The following result is due to Friedman [13] proving a conjecture of Alon.

Lemma 2

(Friedman). The probability that a random d-regular graph G on n vertices, with dn even and \(n > d\), has second eigenvalue \({\le }2\sqrt{d-1}+\epsilon \), is \(1-O(n^{-c})\).

The following is due to Steger and Wormald [32], though the algorithm was first studied by Rucinski and Wormald [29].

Lemma 3

(Steger, Wormald). There is an algorithm for generating a random d-regular graph, uniformly, in time \(O(nd^2)\).

Lemma 4

It is possible to test whether a d-regular graph G on n vertices is Ramanujan in time poly(n).

Combining these three results gives us an algorithm for generating a d-regular expander graph on n vertices in time poly(n). Since our expander graphs will have \(O(\log n)\) vertices, and we only need to generate  \(O(\log n)\) such graphs, this is sufficient for our needs.

Lemma 5

Consider a random walk along the integers \(\mathbb {Z}\) where the probability of moving from i to \(i+1\) is \(f(\frac{i}{n})\) for some increasing function f. Let X be a random variable denoting the time it takes to walk from \(\rho n\) to \(\rho ' n\). Then

$$\Pr \left( \big |X - n\int _{\rho }^{\rho '} \frac{dx}{f(x)}\big | > \epsilon n^{3/4} \right) = e^{-8(\rho '-\rho ) \epsilon ^2\sqrt{n}} .$$

Lemma 6

Fix constants \(\gamma ' < \gamma \), and let A be an array of length n with \(\gamma ' n\) marked balls. Then if \(k\log n / \log \log n\) balls are chosen at random from A, the probability there are more than \(\gamma k\log n\) marked balls chosen is \(n^{-\frac{(\gamma -\gamma ')^2k}{(\gamma +\gamma ') \log \log n}}\).

figure l

Lemma 7

Fix a constant \(c < 1\), and let A be an array of \(\varOmega (n/\log ^3 n)\) balls with at most \(|A|\exp \left( (c-1) \log n (\log \log n)^t\right) \) marked balls, for \(t > -2\). Then if \(k\log n/\log \log n\) balls are chosen at random from A, the probability there are more than \(\ell \log \log n\) marked balls chosen is \(\exp \left( -O(\log n (\log \log n)^{t+1})\right) \), for every choice of \(k,\ell > 0\). In particular, for \(t = 0\), it is negligible in n.

Lemma 8

Fix constants \(\varepsilon \), \(\gamma \) and k. Let A be an array of kn balls, with \(\gamma kn\) balls marked. Shuffle A and divide it into bins of size k. The probability that there are fewer than \(\left( (1-\gamma )^k-\varepsilon \right) n\) empty bins is \(e^{-cn}\), for some constant c.

C Proof of Theorem 2

Proof

Choose \(c > \frac{1}{2}\) and suppose by way of contradiction there is some set U with \(\frac{|U|}{|G|} > c\) that does not activate all of G under percolation. Let S be the set that is activated by U. Then we also have \(\frac{|S|}{|G|} > c\), and all vertices in \(T = G \backslash S\) have fewer than \(\lceil \frac{d+1}{2} \rceil \) edges to S. By the expander mixing lemma (see e.g. [17]) we have

$$\begin{aligned} e(T,T)&\le \frac{d|T|^2}{|G|} + \lambda |T| \\&\le \left( \frac{d|T|}{|G|}+2\sqrt{d-1}\right) |T|, \end{aligned}$$

when G is an expander graph. Taking \(T = G \backslash S\) gives

$$\begin{aligned} e(T,T)&\le \left( d-\frac{dS}{G}+2\sqrt{d-1}\right) |T|\\&\le \left( d(1-c)+2\sqrt{d-1}\right) |T|. \end{aligned}$$

First consider the case when d is odd. We have

$$ 2\sqrt{d-1} < \frac{d+1}{2} $$

for \(d \ge 13\), so that, for c sufficiently close to 1, we have

$$ e(T,T) < \frac{d+1}{2}|T| $$

and

$$ e(S,T) > \frac{d-1}{2}|T|. $$

Thus at least one vertex of T has at least \(\frac{d+1}{2}\) edges to S, and can be activated, a contradiction.

The proof for d even is similar, and relies on the fact that \(d=16\) is the smallest value with

$$ 2\sqrt{d-1} < \frac{d}{2}. $$

Corollary C1

For \(d=13\), there is some constant \(\gamma \) such that every set S with \(|S|/|G| \ge (1-\gamma )^{d+1}\) is a percolating set for majority bootstrap percolation.

Proof

This is an immediate consequence of Theorem 2 but we derive \(\gamma \) explicitly. We desire

$$ \left( d-d(1-\gamma )^{d+1}+2\sqrt{d-1}\right) < \frac{d+1}{2}, $$

and so choose \(\gamma < 0.005307\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dittmer, S., Ostrovsky, R. (2020). Oblivious Tight Compaction In O(n) Time with Smaller Constant. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics