Skip to main content

Impossibility of Strong KDM Security with Auxiliary Input

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

  • 615 Accesses

Abstract

We show that a strong notion of KDM security cannot be obtained by any encryption scheme in the auxiliary input setting, assuming Learning With Errors (LWE) and one-way permutations. The notion of security we deal with guarantees that for any (possibly inefficient) function f, it is computationally hard to distinguish between an encryption of \(\mathbf {0}\) and an encryption of \(f(\mathsf {pk}, z)\), where \(\mathsf {pk} \) is the public key and z is the auxiliary input. Furthermore, we show that this holds even when restricted to bounded-length auxiliary input where z is much shorter than \(\mathsf {pk} \) under the additional assumption that (non-leveled) fully homomorphic encryption exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leakage and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 542–564. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_20

    Chapter  Google Scholar 

  3. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_6

    Chapter  MATH  Google Scholar 

  4. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_8

    Chapter  Google Scholar 

  5. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4

    Chapter  Google Scholar 

  6. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–71. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_4

    Chapter  Google Scholar 

  7. Deshpande, A., Kalai, Y.: Proofs of ignorance and applications to 2-message witness hiding. IACR Cryptology ePrint Archive 2018/896 (2018). version dated: 25-Sept- 2018

    Google Scholar 

  8. Deshpande, A., Kalai, Y.: Proofs of ignorance and applications to 2-message witness hiding. IACR Cryptology ePrint Archive 2018/896 (2018). version dated: 02-Mar-2019

    Google Scholar 

  9. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  10. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp. 25–32. ACM (1989)

    Google Scholar 

  11. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  12. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 612–621 (2017)

    Google Scholar 

  13. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  14. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_10

    Chapter  Google Scholar 

  15. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way functions and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 374–383 (2014)

    Google Scholar 

  16. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  17. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 600–611 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, and by NSF Award DGE-1650441. This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody Freitag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freitag, C., Komargodski, I., Pass, R. (2020). Impossibility of Strong KDM Security with Auxiliary Input. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics