Skip to main content

Global Modelling of Diffraction Phenomena by Irregular Shapes with Hybrid MOM-GTD Method

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12293))

Included in the following conference series:

  • 301 Accesses

Abstract

In this paper we propose to combine in a hybrid method the moments method (MOM) and the general theory of diffraction (GTD). This hybrid approach is used to analyse any arbitrary shape with multiple and varied dimension also place in free space or in wave guide Some examples, e.g. an antenna mounted near a perfect conductor Complex Object with two plates, demonstrates that the hybrid approach is the most suitable technique for modelling large-scale objects with arbitrary shapes. This approach allows us to resolve the problem, that the other methods can’t solve it alone. Generally, random radiation locates on or near an arbitrary form, can be solved using this technique hence the strong advantages of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekelman, E.P., Thiele, G.A.: A hybrid technique for combining the moment method treatment of wire antennas with the GTD for curved surfaces. IEEE Trans. Antennas Propag. 28, 831–839 (1980)

    Article  Google Scholar 

  2. Thiele, G.A.: Overview of selected hybrid methods in radiating system analysis. Proc. IEEE 80, 67–78 (1992)

    Article  Google Scholar 

  3. Bouche, D.P., Molinet, F.A., Mittra, R.: Asymptotic and hybrid techniques for electromagnetic scattering. Proc. IEEE 81, 1658–1684 (1993)

    Article  Google Scholar 

  4. Burnside, W.D., Pathak, P.H.: A summary of hybrid solutions involving moment methods and GTD. In: Applications of the Method of Moments to Electromagnetic Fields, SCEEE Press, St. Cloud (1980)

    Google Scholar 

  5. Rao, S.M., Wilton, D.R., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)

    Article  Google Scholar 

  6. Babitch, V.M., Kirpitcnikova, N.Y.: The Boundary-Layer Method in Diffraction Problems. Springer, Heidelberg (1979)

    Google Scholar 

  7. Sahalos, J.N., Thiele, G.A.: On the application of the GTD–MM technique and its limitations. IEEE Trans. Antennas Propag. 29, 780–786 (1981)

    Article  Google Scholar 

  8. Medgyesi-Mitschang, L.N., Wang, D.-S.: Hybrid methods for the analysis of complex scatterers. Proc. IEEE 77, 770–779 (1989)

    Article  Google Scholar 

  9. Medgyesi-Mitschang, L.N., Putnam, J.M.: Hybrid formulation for arbitrary 3–D bodies. In: 10th Annual Review of Progress in Applied Computational Electromagnetics, ACES Conference, Monterey, vol. II, pp. 267–274, March 1994

    Google Scholar 

  10. Lafitte, O., Lebeau, G.: Equations de Maxwell et opérateur d’impédance sur le bord d’un obstacle convexe absorbant. C. R. Acad. Sci. Paris, T. 316(Série I), 1177–1182 (1993)

    Google Scholar 

  11. Kouyoumjian, R.G., Pathak, P.H.: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 148–1441 (1974)

    Article  Google Scholar 

  12. Pathak, P.H., Kouyoumjian, R.G.: The Dyadic Diffraction Coefficient for a Perfectly Conducting Wedge. The Ohio State University, June 1970

    Google Scholar 

  13. Zhang, Y.J., Li, E.P.: Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders. Progress Electromagnet. Res. PIER 72, 105–126 (2007)

    Article  Google Scholar 

  14. Valagiannopoulos, C.A.: Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other. Progress Electromagnet. Res. B 3, 23–34 (2008)

    Article  Google Scholar 

  15. Illahi, A., Afzaal, M., Naqvi, Q.A.: Scattering of dipole field by a perfect electromagnetic conductor cylinder. Progress Electromagnet. Res. Lett. 4, 43–53 (2008)

    Article  Google Scholar 

  16. Svezhentsev, A.Y.: Some far field features of cylindrical microstrip antenna on an electrically small cylinder. Progress Electromagnet. Res. B 7, 223–244 (2008)

    Article  Google Scholar 

  17. Lai, B.N., Wang, H.B.Y., Liang, C.H.: Progress Electromagnet. Res. 109, 381–389 (2010)

    Google Scholar 

  18. Kuryliak, D.B., Nazarchuk, Z.T., Trishchuk, O.B.: Axially-symmetric TM-waves diffraction by a sphere-conical cavity. Progress Electromagnet. Res. B 73, 1–16 (2017)

    Article  Google Scholar 

  19. Kuryliak, D., Lysechko, V.: Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation. J. Sound Vib. 409, 81–93 (2017)

    Article  Google Scholar 

  20. Kuryliak, D.B.: Axially-symmetric field of the electric dipole over the truncated cone. II. Numerical Modeling. Radio Phys. Radio Astron. 5(3), 284–290 (2000). (in Russian)

    Google Scholar 

  21. Kuryliak, D.B., Kobayashi, K., Nazarchuk, Z.T.: Wave diffraction problem from a semi-infinite truncated cone with the closed-end. Progress Electromagnet. Res. C 88, 251–267 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank ENIT for providing scholarship during the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samir Mendil or Taoufik Aguili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendil, S., Aguili, T. (2020). Global Modelling of Diffraction Phenomena by Irregular Shapes with Hybrid MOM-GTD Method. In: Habachi, O., Meghdadi, V., Sabir, E., Cances, JP. (eds) Ubiquitous Networking. UNet 2019. Lecture Notes in Computer Science(), vol 12293. Springer, Cham. https://doi.org/10.1007/978-3-030-58008-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58008-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58007-0

  • Online ISBN: 978-3-030-58008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics