Abstract
Design of experiments, random search, initialization of population-based methods, or sampling inside an epoch of an evolutionary algorithm uses a sample drawn according to some probability distribution for approximating the location of an optimum. Recent papers have shown that the optimal search distribution, used for the sampling, might be more peaked around the center of the distribution than the prior distribution modelling our uncertainty about the location of the optimum.We confirm this statement, provide explicit values for this reshaping of the search distribution depending on the population size \(\lambda \) and the dimension d, and validate our results experimentally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Arxiv version [20] of the present document includes bigger plots and the appendices.
- 2.
This requires knowledge of \(\inf _{x} f(x)\), which may not be available in real-world applications. In this case, without loss of generality (this is just for the sake of plotting regret values), the infimum can be replaced by an empirical minimum. In all applications considered in this work the value of \(\inf _x f(x)\) is known.
- 3.
Detailed results for individual settings are available at http://dl.fbaipublicfiles.com/nevergrad/allxps/list.html.
References
Atanassov, E.I.: On the discrepancy of the Halton sequences. Math. Balkanica (NS) 18(1–2), 15–32 (2004)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
Bossek, J., Doerr, C., Kerschke, P.: Initial design strategies and their effects on sequential model-based optimization. In: Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2020). ACM (2020). https://arxiv.org/abs/2003.13826
Bossek, J., Kerschke, P., Neumann, A., Neumann, F., Doerr, C.: One-shot decision-making with and without surrogates. CoRR abs/1912.08956 (2019). http://arxiv.org/abs/1912.08956
Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits problems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 23–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04414-4_7
Cauwet, M.L., et al.: Fully parallel hyperparameter search: reshaped space-filling. arXiv preprint arXiv:1910.08406 (2019)
Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Cambridge (2010)
Ergezer, M., Sikder, I.: Survey of oppositional algorithms. In: 14th International Conference on Computer and Information Technology (ICCIT 2011), pp. 623–628 (2011)
Esmailzadeh, A., Rahnamayan, S.: Enhanced differential evolution using center-based sampling. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 2641–2648 (2011)
Esmailzadeh, A., Rahnamayan, S.: Center-point-based simulated annealing. In: 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4 (2012)
Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian hyperparameter optimization via meta-learning. In: AAAI (2015)
Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960). http://eudml.org/doc/131448
Hammersley, J.M.: Monte-Carlo methods for solving multivariate problems. Ann. N. Y. Acad. Sci. 86(3), 844–874 (1960)
James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, vol. 1, pp. 361–379. University of California Press (1961). https://projecteuclid.org/euclid.bsmsp/1200512173
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Maaranen, H., Miettinen, K., Mäkelä, M.: Quasi-random initial population for genetic algorithms. Comput. Math. Appl. 47(12), 1885–1895 (2004)
Mahdavi, S., Rahnamayan, S., Deb, K.: Center-based initialization of cooperative co-evolutionary algorithm for large-scale optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3557–3565 (2016)
Matoušek, J.: Geometric Discrepancy, 2nd edn. Springer, Berlin (2010)
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)
Meunier, L., Doerr, C., Rapin, J., Teytaud, O.: Variance reduction for better sampling in continuous domains (2020)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)
Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algorithms. In: 2009 IEEE Congress on Evolutionary Computation, pp. 933–938, May 2009. https://doi.org/10.1109/CEC.2009.4983045
Rapin, J., Teytaud, O.: Nevergrad - a gradient-free optimization platform (2018). https://GitHub.com/FacebookResearch/Nevergrad
Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceeding of the Third Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, vol. 1, pp. 197–206. University of California Press (1956). https://projecteuclid.org/euclid.bsmsp/1200501656
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Surry, P.D., Radcliffe, N.J.: Inoculation to initialise evolutionary search. In: Fogarty, T.C. (ed.) AISB EC 1996. LNCS, vol. 1143, pp. 269–285. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0032789
Teytaud, O., Gelly, S., Mary, J.: On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 32–41. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_4
Yang, X., Cao, J., Li, K., Li, P.: Improved opposition-based biogeography optimization. In: The Fourth International Workshop on Advanced Computational Intelligence, pp. 642–647 (2011)
Zhang, A., Zhou, Y.: On the non-asymptotic and sharp lower tail bounds of random variables (2018)
Acknowledgements
This work was initiated at Dagstuhl seminar 19431 on Theory of Randomized Optimization Heuristics.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Meunier, L., Doerr, C., Rapin, J., Teytaud, O. (2020). Variance Reduction for Better Sampling in Continuous Domains. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-58112-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58111-4
Online ISBN: 978-3-030-58112-1
eBook Packages: Computer ScienceComputer Science (R0)