Abstract
Many risk-sensitive applications require Machine Learning (ML) models to be interpretable. Attempts to obtain interpretable models typically rely on tuning, by trial-and-error, hyper-parameters of model complexity that are only loosely related to interpretability. We show that it is instead possible to take a meta-learning approach: an ML model of non-trivial Proxies of Human Interpretability (PHIs) can be learned from human feedback, then this model can be incorporated within an ML training process to directly optimize for interpretability. We show this for evolutionary symbolic regression. We first design and distribute a survey finalized at finding a link between features of mathematical formulas and two established PHIs, simulatability and decomposability. Next, we use the resulting dataset to learn an ML model of interpretability. Lastly, we query this model to estimate the interpretability of evolving solutions within bi-objective genetic programming. We perform experiments on five synthetic and eight real-world symbolic regression problems, comparing to the traditional use of solution size minimization. The results show that the use of our model leads to formulas that are, for a same level of accuracy-interpretability trade-off, either significantly more or equally accurate. Moreover, the formulas are also arguably more interpretable. Given the very positive results, we believe that our approach represents an important stepping stone for the design of next-generation interpretable (evolutionary) ML algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)
Burgess, T.F.: Guide to the design of questionnaires. A general introduction to the design of questionnaires for survey research. University of Leeds (2001)
Cano, A., Zafra, A., Ventura, S.: An interpretable classification rule mining algorithm. Inf. Sci. 240, 1–20 (2013)
Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic programming for enhancing generalization in symbolic regression. IEEE Trans. Evol. Comput. 23(4), 703–717 (2018)
Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
Dua, D., Graff, C.: UCI machine learning repository (2017). archive.ics.uci.edu/ml
Ekárt, A., Nemeth, S.Z.: Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming. Genet. Program Evolvable Mach. 2(1), 61–73 (2001)
Evans, B.P., Xue, B., Zhang, M.: What’s inside the black-box? A genetic programming method for interpreting complex machine learning models. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1012–1020 (2019)
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning by genetic programming. Eng. Appl. Artif. Intell. 76, 158–169 (2018)
Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7
Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3), 259–269 (2004)
Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving a front of interpretable models for data visualization. IEEE Trans. Cybern., 1–15 (2020). https://ieeexplore.ieee.org/abstract/document/9007046
Liang, Y., Zhang, M., Browne, W.N.: Multi-objective genetic programming for figure-ground image segmentation. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI 2016. LNCS (LNAI), vol. 9592, pp. 134–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28270-1_12
Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158. ACM (2012)
Maruyama, M., Pallier, C., Jobert, A., Sigman, M., Dehaene, S.: The cortical representation of simple mathematical expressions. Neuroimage 61(4), 1444–1460 (2012)
McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learning. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) EvoMUSART 2020. LNCS, vol. 12103, pp. 118–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43859-3_9
Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Morrisville (2008)
Poli, R., McPhee, N.F.: Parsimony pressure made easy: solving the problem of bloat in GP. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods for the Design of Metaheuristics. NCS, pp. 181–204. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-33206-7_9
Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wallach, H.: Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810 (2018)
Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with Rademacher complexity for symbolic regression. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2657–2664 (2019)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: semantic genetic programming based on dynamic targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 167–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7_11
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Sambo, A.S., Azad, R.M.A., Kovalchuk, Y., Indramohan, V.P., Shah, H.: Time control or size control? Reducing complexity and improving accuracy of genetic programming models. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 195–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7_13
Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genet. Program Evolvable Mach. 13(2), 197–238 (2012)
Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: O’Reilly, U.M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II. GPEM, vol. 8, pp. 283–299. Springer, Boston (2005). https://doi.org/10.1007/0-387-23254-0_17
Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of methodologies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016)
Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recogn. 93, 404–417 (2019)
Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 877–884 (2010)
Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Improving model-based genetic programming for symbolic regression of small expressions. Accepted in Evolutionary Computation. ArXiv preprint arXiv:1904.02050 (2019)
Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1084–1092. Association for Computing Machinery (2019)
Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On explaining machine learning models by evolving crucial and compact features. Swarm Evol. Comput. 53, 100640 (2020)
Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)
Wang, P., Tang, K., Weise, T., Tsang, E., Yao, X.: Multiobjective genetic programming for maximizing ROC performance. Neurocomputing 125, 102–118 (2014)
Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2017)
Watchareeruetai, U., Matsumoto, T., Takeuchi, Y., Kudo, H., Ohnishi, N.: Construction of image feature extractors based on multi-objective genetic programming with redundancy regulations. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1328–1333. IEEE (2009)
White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29 (2013)
Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evol. Comput. 3(1), 17–38 (1995)
Zhao, H.: A multi-objective genetic programming approach to developing Pareto optimal decision trees. Decis. Support Syst. 43(3), 809–826 (2007)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)
Acknowledgments and Author Contributions
We thank the Maurits en Anna de Kock Foundation for financing a high-performance computing system that was used in this work. Author contributions, in order of importance, follow. Conceptualization: M.V.; methodology: M.V., E.M.; software: M.V., A.D.L., F.R.; writing: M.V., E.M., A.D.L., F.R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Virgolin, M., De Lorenzo, A., Medvet, E., Randone, F. (2020). Learning a Formula of Interpretability to Learn Interpretable Formulas. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-58115-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58114-5
Online ISBN: 978-3-030-58115-2
eBook Packages: Computer ScienceComputer Science (R0)