Abstract
Fitness landscape analysis is a well-established tool for gaining insights about optimization problems and informing about the behavior of local and evolutionary search algorithms. In the conventional definition of a fitness landscape, the neighborhood of a given solution is a set containing nearby solutions whose distance is below a threshold, or that are reachable using a deterministic local search operator. In this paper, we generalize this definition in order to analyze the induced fitness landscape for stochastic search operators, that is when neighboring solutions are reachable under different probabilities. More particularly, we give the definition of a stochastic local optimum under this setting, in terms of a probability to reach strictly improving solutions. We illustrate the relevance of stochastic fitness landscapes for enumerable combinatorial benchmark problems, and we empirically analyze their properties for different stochastic operators, neighborhood sample sizes, and local optimality thresholds. We also portray their differences through stochastic local optima networks, intending to gather a better understanding of fitness landscapes under stochastic search operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code, and data are available on https://gitlab.com/b.aboutaib/slo.
References
Alyahya, K., Rowe, J.E.: Simple random sampling estimation of the number of local optima. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 932–941. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_87
Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft Comput. 30, 688–704 (2015)
Bosman, A.S., Engelbrecht, A., Helbig, M.: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions. Neurocomputing (2020)
Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.: Local optima networks, landscape autocorrelation and heuristic search performance. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 337–347. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_34
Elorza, A., Hernando, L., Mendiburu, A., Lozano, J.A.: Estimating attraction basin sizes of combinatorial optimization problems. Progress in Artificial Intelligence 7(4), 369–384 (2018). https://doi.org/10.1007/s13748-018-0156-6
Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems using local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1421–1429 (2019)
Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol. Comput. 21(4), 625–658 (2013)
Hernando, L., Mendiburu, A., Lozano, J.A.: Anatomy of the attraction basins: breaking with the intuition. Evol. Comput. 27(3), 435–466 (2019)
Kauffman, S.A.: The origins of order: Self-organization and selection in evolution. OUP USA (1993)
Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. (2019, accepted)
Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. Iterated local search: framework and Applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12
Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 233–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4_9
Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol. 585, pp. 187–207. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45692-9_10
Tari, S., Basseur, M., Goëffon, A.: Worst improvement Based iterated local search. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 50–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_4
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1539–1546 (2005)
Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 377–384 (2017)
Thomson, S.L., Ochoa, G., Verel, S., Veerapen, N.: Inferring future landscapes: sampling the local optima level. In: Evolutionary Computation, pp. 1–22 (2020)
Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2_5
Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)
Weinberger, E.D.: Local properties of kauffman’s n-k model: a tunably rugged energy landscape. Phys. Rev. A 44(10), 6399 (1991)
Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of NK fitness functions. IEEE Trans. Evol. Comput. 4(4), 373–379 (2000)
Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress of Genetics, vol. 1, pp. 356–366 (1932)
Acknowledgements
We are very thankful to the CALCULCO center of Université du Littoral Côte d’Opale for providing computational resources used in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Aboutaib, B., Verel, S., Fonlupt, C., Derbel, B., Liefooghe, A., Ahiod, B. (2020). On Stochastic Fitness Landscapes: Local Optimality and Fitness Landscape Analysis for Stochastic Search Operators. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-58115-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58114-5
Online ISBN: 978-3-030-58115-2
eBook Packages: Computer ScienceComputer Science (R0)