Skip to main content

On Stochastic Fitness Landscapes: Local Optimality and Fitness Landscape Analysis for Stochastic Search Operators

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

  • 1295 Accesses

Abstract

Fitness landscape analysis is a well-established tool for gaining insights about optimization problems and informing about the behavior of local and evolutionary search algorithms. In the conventional definition of a fitness landscape, the neighborhood of a given solution is a set containing nearby solutions whose distance is below a threshold, or that are reachable using a deterministic local search operator. In this paper, we generalize this definition in order to analyze the induced fitness landscape for stochastic search operators, that is when neighboring solutions are reachable under different probabilities. More particularly, we give the definition of a stochastic local optimum under this setting, in terms of a probability to reach strictly improving solutions. We illustrate the relevance of stochastic fitness landscapes for enumerable combinatorial benchmark problems, and we empirically analyze their properties for different stochastic operators, neighborhood sample sizes, and local optimality thresholds. We also portray their differences through stochastic local optima networks, intending to gather a better understanding of fitness landscapes under stochastic search operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code, and data are available on https://gitlab.com/b.aboutaib/slo.

References

  1. Alyahya, K., Rowe, J.E.: Simple random sampling estimation of the number of local optima. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 932–941. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_87

    Chapter  Google Scholar 

  2. Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft Comput. 30, 688–704 (2015)

    Article  Google Scholar 

  3. Bosman, A.S., Engelbrecht, A., Helbig, M.: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions. Neurocomputing (2020)

    Google Scholar 

  4. Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.: Local optima networks, landscape autocorrelation and heuristic search performance. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 337–347. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_34

    Chapter  Google Scholar 

  5. Elorza, A., Hernando, L., Mendiburu, A., Lozano, J.A.: Estimating attraction basin sizes of combinatorial optimization problems. Progress in Artificial Intelligence 7(4), 369–384 (2018). https://doi.org/10.1007/s13748-018-0156-6

    Article  Google Scholar 

  6. Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems using local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1421–1429 (2019)

    Google Scholar 

  7. Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol. Comput. 21(4), 625–658 (2013)

    Article  Google Scholar 

  8. Hernando, L., Mendiburu, A., Lozano, J.A.: Anatomy of the attraction basins: breaking with the intuition. Evol. Comput. 27(3), 435–466 (2019)

    Article  Google Scholar 

  9. Kauffman, S.A.: The origins of order: Self-organization and selection in evolution. OUP USA (1993)

    Google Scholar 

  10. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. (2019, accepted)

    Google Scholar 

  11. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19

    Chapter  Google Scholar 

  12. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. Iterated local search: framework and Applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12

  13. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 233–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4_9

    Chapter  Google Scholar 

  14. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol. 585, pp. 187–207. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45692-9_10

    Chapter  Google Scholar 

  15. Tari, S., Basseur, M., Goëffon, A.: Worst improvement Based iterated local search. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 50–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_4

    Chapter  Google Scholar 

  16. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1539–1546 (2005)

    Google Scholar 

  17. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 377–384 (2017)

    Google Scholar 

  18. Thomson, S.L., Ochoa, G., Verel, S., Veerapen, N.: Inferring future landscapes: sampling the local optima level. In: Evolutionary Computation, pp. 1–22 (2020)

    Google Scholar 

  19. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2_5

    Chapter  Google Scholar 

  20. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  21. Weinberger, E.D.: Local properties of kauffman’s n-k model: a tunably rugged energy landscape. Phys. Rev. A 44(10), 6399 (1991)

    Article  Google Scholar 

  22. Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of NK fitness functions. IEEE Trans. Evol. Comput. 4(4), 373–379 (2000)

    Article  Google Scholar 

  23. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress of Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

Download references

Acknowledgements

We are very thankful to the CALCULCO center of Université du Littoral Côte d’Opale for providing computational resources used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Aboutaib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aboutaib, B., Verel, S., Fonlupt, C., Derbel, B., Liefooghe, A., Ahiod, B. (2020). On Stochastic Fitness Landscapes: Local Optimality and Fitness Landscape Analysis for Stochastic Search Operators. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics