Skip to main content

An Optimal Lower Bound for Hierarchical Universal Solutions for TSP on the Plane

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2020)

Abstract

A Universal TSP tour on a metric space is a total order defined over all points in the space, such that an approximate traveling salesman tour on any finite subset can be found by visiting each point of the subset in the induced order. The performance of a UTSP tour is evaluated by comparing the worst-case ratio of the length of the induced tour to the length of the optimal TSP tour over all subsets of size n. This problem has attracted significant interest over the past thirty years, especially in the case where the locations are points in the Euclidean plane.

For points in the plane Platzman and Bartholdi [J. ACM, 36(4):719–737, 1989] achieved a competitive ratio of \(O(\log n)\) using an ordering derived from the Sierpinski curve. We introduce the notion of hierarchical orderings which captures all the commonly discussed orderings for the UTSP, including those derived from the Sierpinski, Hilbert, Lebesgue and Peano curves.

Our main result is a lower bound of \(\varOmega (\log n)\) on the competitive ratio of any Universal TSP tour using hierachical orderings. This is an improvement for this setting on the best known lower bound for Universal TSP on the plane for arbitrary orderings of \(\varOmega \left( \root 6 \of {\frac{\log n}{\log \log n}}\, \right) \) due to Hajiaghayi et al. [Proc. of SODA, 649–658, 2006].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The angle between a pair of edges is the angle at which the lines going through them meet.

References

  1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 184–193 (1996)

    Google Scholar 

  3. Bertsimas, D., Grigni, M.: Worst-case examples for the spacefilling curve heuristic for the Euclidean traveling salesman problem. Oper. Res. Lett. 8(5), 241–244 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bhalgat, A., Chakrabarty, D., Khanna, S.: Optimal lower bounds for universal and differentially private steiner trees and TSPs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp. 75–86. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0_7

    Chapter  MATH  Google Scholar 

  5. Christodoulou, G., Sgouritsa, A.: An improved upper bound for the universal TSP on the grid. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1006–1021 (2017)

    Google Scholar 

  6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, CMU Technical Report (1976)

    Google Scholar 

  7. Efrat, A., Katz, M.J., Nielsen, F., Sharir, M.: Dynamic data structures for fat objects and their applications. Comput. Geom. 15(4), 215–227 (2000)

    Article  MathSciNet  Google Scholar 

  8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

    Article  MathSciNet  Google Scholar 

  9. Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G.: Improved lower bounds for the universal and a priori TSP. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM -2010. LNCS, vol. 6302, pp. 178–191. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3_14

    Chapter  MATH  Google Scholar 

  10. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 970–979 (2006)

    Google Scholar 

  11. Hajiaghayi, M.T., Kleinberg, R.D., Leighton, F.T.: Improved lower and upper bounds for universal TSP in planar metrics. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 649–658 (2006)

    Google Scholar 

  12. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approximations for TSP, Steiner tree, and set cover. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 386–395 (2005)

    Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  14. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)

    Article  MathSciNet  Google Scholar 

  15. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete. Theor. Comput. Sci. 4(3), 237–244 (1977)

    Article  MathSciNet  Google Scholar 

  16. Platzman, L.K., Bartholdi III, J.J.: Spacefilling curves and the planar travelling salesman problem. J. ACM 36(4), 719–737 (1989)

    Article  MathSciNet  Google Scholar 

  17. Schalekamp, F., Shmoys, D.B.: Algorithms for the universal and a priori TSP. Oper. Res. Lett. 36(1), 1–3 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Eades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eades, P., Mestre, J. (2020). An Optimal Lower Bound for Hierarchical Universal Solutions for TSP on the Plane. In: Kim, D., Uma, R., Cai, Z., Lee, D. (eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science(), vol 12273. Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58150-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58149-7

  • Online ISBN: 978-3-030-58150-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics