Skip to main content

Industrial Plant Topology Models to Facilitate Automation Engineering

  • Conference paper
  • First Online:
Systems Modelling and Management (ICSMM 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1262))

Included in the following conference series:

Abstract

Industrial plant topology models can potentially automate many automation engineering tasks that are today carried out manually. Information on plant topologies is today mostly available in informal CAD drawings, but not formal models that transformations could easily process. The upcoming DEXPI/ISO15926 standard may enable turning CAD drawings into such models, but was so far mainly used for data exchange. This paper proposes extensions to the CAYENNE method for control logic and process graphics generation to utilize DEXPI models and demonstrates the supported model transformation chain prototypically in two case studies involving industrial plants. The results indicate that the model expressiveness and mappings were adequate for the addressed use cases and the model processing could be executed in the range of minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.automationml.org/o.red.c/tools.html.

  2. 2.

    https://dexpi.org.

  3. 3.

    https://digitalnext-bilfinger.com/solutions/pidgraph.

References

  1. Arroyo, E., Fay, A., Chioua, M., Hoernicke, M.: Integrating plant and process information as a basis for automated plant diagnosis tasks. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8. IEEE (2014)

    Google Scholar 

  2. Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A.: Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 92, 112–132 (2016)

    Article  Google Scholar 

  3. Barth, M., Fay, A.: Automated generation of simulation models for control code tests. Control Eng. Pract. 21(2), 218–230 (2013)

    Article  Google Scholar 

  4. Bauer, M., Thornhill, N.F.: A practical method for identifying the propagation path of plant-wide disturbances. J. Process Control 18(7–8), 707–719 (2008)

    Article  Google Scholar 

  5. Bloch, H., et al.: State-based control of process services within modular process plants. Procedia CIRP 72, 1088–1093 (2018)

    Article  Google Scholar 

  6. Drath, R., Ingebrigtsen, I.: Digitalization of the IEC PAS 63131 Standard with AutomationML. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 901–909, September 2018. https://doi.org/10.1109/ETFA.2018.8502458

  7. Drath, R.: Datenaustausch in der Anlagenplanung mit AutomationML: Integration von CAEX, PLCopen XML und COLLADA. Springer, Heidelberg (2009)

    Google Scholar 

  8. Drath, R., Fay, A., Schmidberger, T.: Computer-aided design and implementation of interlock control code. In: IEEE Conference on Computer Aided Control System Design, pp. 2653–2658. IEEE (2006)

    Google Scholar 

  9. Fay, A., Schmidberger, T., Scherf, T.: Knowledge-based support of HAZOP studies using a CAEX plant model. Inside Funct. Saf. 2009(2), 5–15 (2009)

    Google Scholar 

  10. Grüner, S., Weber, P., Epple, U.: Rule-based engineering using declarative graph database queries. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 274–279. IEEE (2014)

    Google Scholar 

  11. Gutermuth, G.: Engineering. In: Collaborative Process Automation Systems, pp. 156–182. ISA (2010)

    Google Scholar 

  12. Hahn, A., Hensel, S., Hoernicke, M., Urbas, L.: Concept for the detection of virtual functional modules in existing plant topologies. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pp. 820–825. IEEE (2016)

    Google Scholar 

  13. Hoernicke, M., Fay, A., Barth, M.: Virtual plants for brown-field projects. In: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–8. IEEE (2015)

    Google Scholar 

  14. Koltun, G., Kolter, M., Vogel-Heuser, B.: Automated generation of modular PLC control software from P&ID diagrams in process industry. In: 2018 IEEE International Systems Engineering Symposium (ISSE), pp. 1–8. IEEE (2018)

    Google Scholar 

  15. Koziolek, H., Burger, A., Platenius-Mohr, M., Jetley, R.: A classification framework for automated control code generation in industrial automation. J. Syst. Softw. (JSS) (2020, To appear)

    Google Scholar 

  16. Koziolek, H., et al.: Rule-based code generation in industrial automation: four large-scale case studies applying the CAYENNE method. In: Proceedings of 42nd International Conference on Software Engineering (ICSE 2020). Software Engineering in Practice TRack (SEIP) (2020)

    Google Scholar 

  17. Krausser, T., Quirós, G., Epple, U.: An IEC-61131-based rule system for integrated automation engineering: concept and case study. In: 2011 9th IEEE International Conference on Industrial Informatics, pp. 539–544. IEEE (2011)

    Google Scholar 

  18. Morbach, J., Yang, A., Marquardt, W.: Ontocape-a large-scale ontology for chemical process engineering. Eng. Appl. Artif. Intell. 20(2), 147–161 (2007)

    Article  Google Scholar 

  19. Schleburg, M., Christiansen, L., Thornhill, N.F., Fay, A.: A combined analysis of plant connectivity and alarm logs to reduce the number of alerts in an automation system. J. Process Control 23(6), 839–851 (2013)

    Article  Google Scholar 

  20. Schmidberger, T., Horch, A., Fay, A., Drath, R., Breitenecker, F., Troch, I.: Rule based engineering of asset management system functionality. In: 5th Vienna Symposium on Mathematical Modelling, vol. 8 (2006)

    Google Scholar 

  21. Schmitz, S., Epple, U.: Automated engineering of human machine interfaces. In: VDI/VDE Gesellschaft Mess-und Automatisierungstechnik, pp. 127–138 (2007)

    Google Scholar 

  22. Steinegger, M., Melik-Merkumians, M., Schitter, G.: Ontology-based framework for the generation of interlock code with redundancy elimination. In: Proceedings of 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–5. IEEE (2017)

    Google Scholar 

  23. Steinegger, M., Zoitl, A.: Automated code generation for programmable logic controllers based on knowledge acquisition from engineering artifacts: concept and case study. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), pp. 1–8. IEEE (2012)

    Google Scholar 

  24. Tauchnitz, T.: Schnittstellen für das integrierte engineering. ATP Mag. 56(01–02), 30–36 (2014)

    Article  Google Scholar 

  25. Thambirajah, J., Benabbas, L., Bauer, M., Thornhill, N.F.: Cause-and-effect analysis in chemical processes utilizing xml, plant connectivity and quantitative process history. Comput. Chem. Eng. 33(2), 503–512 (2009)

    Article  Google Scholar 

  26. Urbas, L., Doherr, F.: autoHMI: a model driven software engineering approach for HMIS in process industries. In: 2011 IEEE International Conference on Computer Science and Automation Engineering, vol. 3, pp. 627–631. IEEE (2011)

    Google Scholar 

  27. Vogel-Heuser, B., Fay, A., Schaefer, I., Tichy, M.: Evolution of software in automated production systems: challenges and research directions. J. Syst. Softw. 110, 54–84 (2015)

    Article  Google Scholar 

  28. Wiedau, M., von Wedel, L., Temmen, H., Welke, R., Papakonstantinou, N.: Enpro data integration: extending DEXPI towards the asset lifecycle. Chem. Ing. Tech. 91(3), 240–255 (2019)

    Article  Google Scholar 

  29. Yim, S.Y., Ananthakumar, H.G., Benabbas, L., Horch, A., Drath, R., Thornhill, N.F.: Using process topology in plant-wide control loop performance assessment. Comput. Chem. Eng. 31(2), 86–99 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Koziolek .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 79054 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koziolek, H., Rückert, J., Berlet, A. (2020). Industrial Plant Topology Models to Facilitate Automation Engineering. In: Babur, Ö., Denil, J., Vogel-Heuser, B. (eds) Systems Modelling and Management. ICSMM 2020. Communications in Computer and Information Science, vol 1262. Springer, Cham. https://doi.org/10.1007/978-3-030-58167-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58167-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58166-4

  • Online ISBN: 978-3-030-58167-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics