Skip to main content

Service Analytics: Putting the “Smart” in Smart Services

  • Chapter
  • First Online:
Smart Service Management

Abstract

Artificial intelligence in general and the techniques of machine learning in particular provide many possibilities for data analysis. When applied to services, they allow them to become smart by intelligently analyzing data of typical service transactions, e.g., encounters between customers and providers. We call this service analytics. In this chapter, we define the terminology associated with service analytics, artificial intelligence, and machine learning. We describe the concept of service analytics and illustrate it with typical examples from industry and research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.

    Article  Google Scholar 

  • Böhmann, T., Leimeister, J. M. & Möslein, K. (2014). Service-systems-engineering. Wirtschaftsinf, 56, 83–90 (2014).

    Article  Google Scholar 

  • Bousquet, O., von Luxburg, U., & Rätsch, G. (2011). Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures (Vol. 3176). Berlin: Springer.

    MATH  Google Scholar 

  • Chollet, F. (2017). Deep learning with python (1st ed.). Greenwich, CT: Manning Publications.

    Google Scholar 

  • Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Brighton, MA: Harvard Business Press.

    Google Scholar 

  • Delen, D., & Demirkan, H. (2013). Data, information and analytics as services.

    Book  Google Scholar 

  • Eichengreen, B., & Gupta, P. (2011). The two waves of service-sector growth. Oxford Economic Papers, 65(1), 96–123.

    Article  Google Scholar 

  • Emmert-Streib, F., & Dehmer, M. (2009). Information theory and statistical learning. Berlin: Springer.

    Book  Google Scholar 

  • Fromm, H., Habryn, F., & Satzger, G. (2012). Service analytics: leveraging data across enterprise boundaries for competitive advantage. In: U. Bäumer, P. Kreutter, W. Messner (Eds.), Globalization of professional services: Innovative strategies, successful processes, inspired talent management, and first-hand experiences (pp. 139–149). Berlin: Springer.

    Chapter  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: Data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  • Heid, B., Huth, C., Kempf, S., & Wu, G. (2018). Ready for inspection: The automotive aftermarket in 2030. Technical report, McKinsey & Company.

    Google Scholar 

  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6), 82–97.

    Article  Google Scholar 

  • Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Proceedings. 2004 IEEE International Joint Conference on Neural Networks, 2004 (Vol. 2, pp. 985–990). Piscataway, NJ: IEEE.

    Google Scholar 

  • Kisore, N. R., & Reddy, P. G. (2015). Empirical determination and evaluation of factors that impact ATM placement. In 2015 48th Hawaii International Conference on System Sciences (pp. 1341–1348). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  • Kohavi, R., Rothleder, N. J., & Simoudis, E. (2002). Emerging trends in business analytics. Communications of the ACM, 45(8), 45–48.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

    Google Scholar 

  • Kühl, N., Goutier, M., Hirt, R., & Satzger, G. (2019). Machine learning in artificial intelligence: Towards a common understanding. In Proceedings of the 52nd Hawaii International Conference on System Sciences.

    Google Scholar 

  • Kühl, N., Hirt, R., Baier, L., Schmitz, B., Satzger, G. (2020). How to conduct rigorous supervised machine learning in information systems research: The supervised machine learning reportcard, communications of the association for information systems.

    Google Scholar 

  • Laubis, K., Simko, V., Schuller, A., & Weinhardt, C. (2017). Road condition estimation based on heterogeneous extended floating car data. In Proceedings of the 50th Hawaii International Conference on System Sciences.

    Google Scholar 

  • LeCun, Y. A., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Trans. Information Theory, 28, 129–136.

    Article  MathSciNet  Google Scholar 

  • Maglio, P. P., Kieliszewski, C. A., Spohrer, J. C., Lyons, K., Patrício, L., & Sawatani, Y. (2018). Handbook of service science (Vol. II). Berlin: Springer.

    Google Scholar 

  • Martin, D., Kühl, N., von Bischhoffshausen, J. K., & Satzger, G. (in press). System-wide learning in cyber-physical service systems: A research agenda. In Proceedings of the 15th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2020), Kristiansand, Norwegen, November 2020.

    Google Scholar 

  • Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Neely, A. (2008). Exploring the financial consequences of the servitization of manufacturing. Operations Management Research, 1(2), 103–118.

    Article  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370–384.

    Article  Google Scholar 

  • Nilsson, N. J. (2014). Principles of artificial intelligence. Burlington, MA: Morgan Kaufmann.

    MATH  Google Scholar 

  • Schoch, J., Staudt, P., and Setzer, T. (2017). Smart data selection and reduction for electric vehicle service analytics.

    Book  Google Scholar 

  • Schommer, C. (2008). An unified definition of data mining. Preprint arXiv:0809.2696

    Google Scholar 

  • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.

    Article  Google Scholar 

  • Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810.

    Google Scholar 

  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359.

    Article  Google Scholar 

  • Steins, K., Matinrad, N., & Granberg, T. (2019). Forecasting the demand for emergency medical services. In Proceedings of the 52nd Hawaii International Conference on System Sciences.

    Google Scholar 

  • Steuer, D., Hutterer, V., Korevaar, P., & Fromm, H. (2018). A similarity-based approach for the all-time demand prediction of new automotive spare parts. In: Proceedings of the 51st Hawaii International Conference on System Sciences

    Google Scholar 

  • Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: Continuing the evolution. Journal of the Academy of Marketing Science, 36(1), 1–10.

    Article  Google Scholar 

  • Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques (3rd ed., Vol. 54). Burlington, MA: Morgan Kaufmann

    Google Scholar 

  • Wolff, C., Vössing, M., Schmitz, B., & Fromm, H. (2018). Towards a technician marketplace using capacity-based pricing. In Proceedings of the 51st Hawaii International Conference on System Sciences.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Kühl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kühl, N., Fromm, H., Schöffer, J., Satzger, G. (2020). Service Analytics: Putting the “Smart” in Smart Services. In: Maleshkova, M., Kühl, N., Jussen, P. (eds) Smart Service Management. Springer, Cham. https://doi.org/10.1007/978-3-030-58182-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58182-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58181-7

  • Online ISBN: 978-3-030-58182-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics